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Communicating meaning and purpose of spatio-temporal data analysis

by Matthias HINZ

Spatio-temporal data analyses can be hard to understand. Given the
complexity of advanced analysis procedures and big, heterogeneous datasets,
comprehending the work of others can be difficult if not impossible, if no
adequate documentation is supplemented. On the other hand, manual cre-
ation of metadata and documentation is a cumbersome work that scientists
neglect because it does not pay off immediately.

For a given analysis that is shared amongst researchers, relevant infor-
mation about meaning, purpose and scientific presuppositions of Spatial
Statistics are often absent. Also, the scientific community has not yet estab-
lished means to express and share this information in a systematic way, i.e.
by making use of semantic ontologies and reference systems.

This thesis shows how to ease the tedious work of metadata creation
and how to create metadata that is expressive regarding meaning and pur-
pose. It presents the ’SpatialSemantics’ package for R, which is a proto-
typical library and extension of the R environment for statistical comput-
ing. It exemplifies how during execution of an analysis a so-called spatio-
temporal data derivation graph is generated in the background, which can
be visualized, shared and reviewed, as it is a documentation of the analysis.

The metadata generation is semi-automated; on the one hand, the effort
on the part of the user is minimal because the recording engine populates
the graph automatically with semantics. On the other hand, users can spec-
ify which part of the analysis, they can apply semantic annotations and
define checks for semantic consistency and validity. The user can interac-
tively query semantics during the analysis session and receives warnings if
a semantic check fails.

This work concludes about how to better communicate our work, and
how to share it with those people we collaborate with.

HTTPS://WWW.UNI-MUENSTER.DE/
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Chapter 1

Introduction

1.1 Preface

In December 1998, the Mars Climate Orbiter (MCO) was launched from
Cape Canaveral and sent on a 416-million-mile journey to Mars. Its mis-
sion was to find water on the planet by tracking seasonal changes and
movements of vapor and dust for one entire Mars year (687 Earth days).
After about nine months, MCO arrived and started its Orbit insertion tra-
jectory, but after 4 minutes the signal broke up. It was never recovered
again. NASA lost the spacecraft worth 125 million dollars. The root cause
of the accident was a failure in modeling velocity changes of the space-
craft. A ground software file used English units instead of metric units and
then did not convert the output from pound-seconds (lbf-s) into Newton-
seconds (N-s). As a result, all subsequent predictions were underestimated
by the conversion factor 4.45. That happened despite that a Software In-
terface Specification (SIS) explicitly specified the output unit; the document
was not followed (Stephenson et al., 1999).

Dr. Edward Weiler, NASA’s associate administrator for space science
said: “People sometimes make errors. The problem here was not the error;
it was the failure of NASA’s systems engineering, and the checks and bal-
ances in our processes to detect the error. That’s why we lost the spacecraft
(Isbell, Hardin, and Underwood, 1999).” Many investigations followed,
questioning why the project failed. NASA itself studied the case intensely
and published a report on lessons learned and recommendations for further
projects (Griner and Keegan, 2000).

Other researchers picked up the topic later (Sauser, Reilly, and Shenhar,
2009) and argued that project failure often goes beyond technical reasons
and management could have prevented the accident. Sauser et al. suggest
a better upfront assessment of the program’s uncertainty and complexity,
and installing proper managerial systems that would detect errors ahead of
time.

A contributing factor to the failure was NASA’s policy of faster, better,
cheaper, which was not implemented adequately; the project was carried
out under high constraints of time and budget. One team leader said that
“it was mandatory that we cut corners, primarily in the review and quality
engineering process (Sauser, Reilly, and Shenhar, 2009)” (Stephenson et al.,
1999).
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As shown above, the NASA incident serves as an example to the impor-
tance of management. However, failures occurred at various levels: man-
agement, engineering, programming and interpersonal interaction. Even-
tually, it can be broken down to miscommunication. A look at current de-
velopments in data science suggests another, different resolution that com-
plements the management approach: what if we implemented more reli-
able, more transparent workflows that carry out semantic reasoning over
data processing? Most development environments and data processing
applications will throw errors or warnings only when a program code is
syntactically invalid, or when a task is not feasible. But many of those
errors are detected even before compilation and execution. On the other
hand, seldom applications throw errors when data manipulation violates
semantic premises, especially if it does not comply with the underlying
scientific assumptions. So-called domain-aware semantic applications can
do so because they make use of domain-specific knowledge and concepts
formalized as reference systems and ontologies. An error such as mix-
ing up observations of different units such as pound-seconds and New-
ton can be detected as a semantic error by making use of an ontology of
physical measurement units. Applications are called provenance-aware if
they keep track of data generation and transformations and thus provide a
record of all entities and procedures involved in the delivery of their out-
put. Such provenance records have an added-value if they are annotated
with domain-specific semantics. It enables posterior semantic validation
without the need to re-execute the process as well as meaningful documen-
tation of the same. Hence, the record could be shared with third parties,
which may review the analysis independently. The use of provenance- and
domain-aware software, in turn, would allow project managers to reason-
ably cut down the overhead in the test and review process - a significant
advantage when budget and time are limited.

There is a particular demand for meaningful data analysis supported by
domain-specific semantics in the field of Spatial Statistics. This is the moti-
vation of this work. The following paragraphs will elaborate this problem
and explain how this thesis addresses it.

1.2 Background

Modern data science not only addresses the handling and processing of
data itself, but also descriptive information thereof that fosters understand-
ing. Metadata tells the computer how to handle and access data structures
(file formats), how to display and visualize it. It can refer to measurement
units and reference systems, which enables meaningful interpretation of
data and thus turning data into information.

An important research field in this context is provenance. According
to the W3C Provenance Incubator Group, provenance and metadata are re-
lated but distinct terms. Provenance is often represented as metadata and
thus defined as “a record that describes entities and processes involved in
producing and delivering or otherwise influencing that resource (Gil, Ch-
eney, et al., 2010)”.
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The incubator group further came up with a listing of key provenance
dimensions, from which the scope of provenance information becomes ap-
parent (Gil, Cheney, et al., 2010). They structure listing into the following
categories of management, content and use:

Content: Object, Attribution, Process, Versioning, Justification, Entailment

Management: Publication, Access, Dissemination, Scale

Use: Understanding, Interoperability, Comparison, Accountability, Trust,
Imperfections, Debugging

These dimensions and requirements of provenance were elaborated in de-
tail by the incubator group and later taken up by the W3C Provenance
Working Group. This follow-up aimed to create a cross-disciplinary Web
standard for provenance information and with this, defined the PROV-data
model (Gil, Miles, et al., 2013; Missier, Belhajjame, and Cheney, 2013). The
data model is implemented in well-established technologies on the Seman-
tic Web (XML schema, OWL, RDF). PROV is domain-agnostic, meaning
that it is not capable of holding domain-specific information by itself. For
this reason, the authors encourage developers to create PROV-extensions
according to the requirements of their applications and scientific disciplines.

Yet, before the development of PROV, the idea of semantic provenance
emerged; Missier, Sahoo, et al. (2010) pointed out that most former research
on provenance acquisition focused on causal relationships amongst data
products and neglected the semantic character of these products. With
Janus, they provided a proof-of-concept for a domain-aware provenance
model that enhances provenance graph with domain-specific annotations.
Janus was designed for bio-informatics and enables user-scientists to query
the provenance of scientific workflows with domain-specific terminology,
for instance:

“Amongst all genes that are known to perform a certain biological function,
list those that are involved in a certain pathway,” (Missier, Sahoo, et al., 2010).

Missier et al. proposed to embed provenance graphs as data on the Web
of Data, thereby following the conventions of Linked Open Data (LOD).
They demonstrated that this approach serves to answer an even wider range
of queries; the query above generally cannot be solved if the provenance
graph that is queried does not include the concept of the biological function
of genes. The solution to this problem is to query a large public database
for genes that occur in the provenance graph and for their function. This
information is then used resolve the overall query. Hence, integration of
provenance on the Web of Data allows executing complex, domain-specific
queries supported by multiple sources of information.

Currently, there is no comprehensive provenance model for Spatial Statis-
tics that is comparable with Janus, despite some ongoing research in the
field of semantics (See Chapter 2). On the other hand, there is a concrete
demand for domain-specific inquiries when such analyses are communi-
cated. Roger et al. state in their book about “Applied Spatial Data Analysis
in R” that “spatial data analysis is concerned with questions not directly
answered by looking at the data themselves. These questions refer to hy-
pothetical processes that generate the observed data. Statistical inference
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for such spatial process is often challenging but is necessary when we try to
draw conclusions about questions that interest us (R. S. Bivand, E. Pebesma,
and Gómez-Rubio, 2013, p. 1)”. In the same chapter, they state that “Sta-
tistical inference is concerned with drawing conclusions based on data and
prior assumptions. The presence of a model of the data generating process
may be more or less acknowledged in the analysis, but its reality will make
itself felt sooner or later.” They criticize that frequently, “the prior assump-
tions are not made explicit, but is taken for granted as part of the research
tradition of a particular scientific discipline. Too little attention typically is
paid to the assumptions, and too much to superficial differences (R. S. Bi-
vand, E. Pebesma, and Gómez-Rubio, 2013, pp. 11-12).” Such statements
hint at a lot of vagueness and uncertainty in the common research prac-
tice, yet they comprise a concrete appeal to pay more attention to research
assumptions and models.

In a recent publication, C. Stasch, Scheider, et al. (2014) stressed the im-
portance of observations in research: “Observations form the basis of em-
pirical and physical sciences. They provide samples for a process of in-
terest, enabling us to infer knowledge about this process and to evaluate
assumptions and hypotheses. In order to infer knowledge or test hypothe-
ses about a process, statistical models and procedures can be applied to
observations.” According to the authors, syntactical integration of obser-
vation in statistical modeling frameworks is not an issue, but the seman-
tical integration is a challenge. In particular, determining which method
is appropriate for which kind of data in an automated fashion is an open
research question. Stasch et al. yet identified additional problems in this
context; in interdisciplinary settings, large volumes of data from heteroge-
neous resources are often combined by researchers without specific domain
knowledge. Furthermore, the distance between those who collect data and
those who analyze it in general becomes larger. Thus there is a need for se-
mantic metadata that bridges the knowledge gap between domain experts
and data scientists.

Another point brought up in the paper is model interoperability and
model reuse; it is said that, according to a NASA report from 2012, NASA
scientists would spend about 60% of their time on making data and mod-
els compatible (C. Stasch, Scheider, et al., 2014). To this example, it may be
added that abortive reuse of software from NASA’s Ariane 4 program in
1996 led to the explosion of the first Ariane 5 rocket (Ariane V88), a loss of
about 360 million US-dollars and a delay of the Ariane 5 program for one
year (Le Lann, 1997). For such reasons, model- and data interoperability as
well as semantic interoperability (see Chapter 2) are a particular concern of
research.

Given this assessment of particular needs in Spatial Statistics and Ge-
ographic Information Science, Stash et al. proposed to formalize analysis
procedures and introduced a novel notion of the meaningfulness of predic-
tion and aggregation. This was specified in a semantic theory in higher-
order logic (HOL). Procedures for observation, prediction and aggregation
are formalized as functional types which are assigned to data sets. The the-
ory was designed to enable meaningfulness checks when either prediction
or aggregation functions are applied to data.

A subsequent paper from Scheider et al. (2016) built upon this theory
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and drafted it as a generative algebra for modeling spatio-temporal infor-
mation generation. The concept of this algebra will be explained in Chapter
3 because it forms part of the methodology and approach presented in this
thesis.

According to the Scheider et al. current solutions provide insufficient
descriptions about how data is generated. They argue that “in data analy-
sis, we crucially depend on such meta-information which goes beyond the
data type. [...] [W]e present a generative model of spatiotemporal infor-
mation that precisely makes these distinctions, by describing how informa-
tion is generated, including raw observations as well as derived products.”
In the following sentences they stress important aspects of the meaning of
data, more precisely, about their function and purpose and on the advantages
of making this information explicit; “If the who, how, and why of the en-
tire production chain is known, meaningful analysis can be inferred and
added on top of an existing data product and datasets can be queried on
the basis of how they were derived or which products they could be turned
into. This enables smart data as opposed to smart applications (Scheider et
al., 2016, p. 1981).” Again, the authors aimed for domain-specific seman-
tic queries, such as mentioned above. Apart from those queries, the model
could help automating the description of a derivation process and thus en-
able semantic-aware software for Spatial Statistics. This was also expressed
by the authors. They indicated that it is a challenge “to map tools to gener-
ation types, and to annotate datasets with their derivation graph. The latter
should be automatized as much as possible in order to avoid work for data
publishers. For example, a tool such as R (R Core Team, 2016) could gener-
ate a derivation graph automatically in the background as data producers
generate datasets. (Scheider et al., 2016, p.2001).” This statement largely
addressed in this thesis; it gives direction to one of the research objectives
described in the following section.

In conclusion, the algebraic model presented by Scheider et al. (2016)
can be used to address open research questions and demands in the fields
of Spatial Statistics, as outlined in this section. This thesis aims to show how
they can be addressed.

1.3 Research aim and objectives

This work represents applied research insofar that it aims to explore and
suggest practical solutions for a common problem in Spatial Statistics: com-
munication of meaning and purpose of spatio-temporal data analyses. The
main focus lies on analyses that are carried out in software environments
for Spatial Statistics, but also, users of Geographic Information Systems
(GIS) could relate to this work. People that shall benefit from this research
are those who use spatio-temporal analysis as a tool.

The thesis builds upon primary research on the subject of Meaningful
Spatial Statistics1(C. Stasch, Scheider, et al., 2014; C. Stasch, E. Pebesma, and
Scheider, 2014; E. J. Pebesma and C. Stasch, 2014; Scheider et al., 2016). No-
tably, the publication from Scheider et al. (2016) is fundamental to this work
because it defines an algebra for modeling spatio-temporal data generation

1Resources and publications about Meaningful Spatial Statistics are available at
http://meaningfulspatialstatistics.org/.

http://meaningfulspatialstatistics.org/
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and derivation using types of reference systems. This modeling algebra will
be used throughout the thesis in order to demonstrate semantic modeling
on spatio-temporal data analysis.

In order to carry the research aim into effect, a number of research ob-
jectives are declared in the following. A research objective is considered
fulfilled if the requirements stated below the objective are met:

Objective 1: Design and implement a framework for the semantic
provenance of spatio-temporal analysis

This work aims to provide a proof-of-concept to the existing algebraic model
by implementing it in a prototypical extension package for the statistical
computing and graphics environment R (R Core Team, 2016).

The prototype shall facilitate communication of the semantic provenance
associated with spatio-temporal data analysis. Therefore it shall perform
the following functionality:

• The prototype shall be a domain-aware application for Spatial Statis-
tics.

• The prototype shall be documented and tested.

• The prototype shall generate a spatio-temporal derivation graph in
the background while an analysis is carried out. It shall be possible
to save and export the graph as appropriate data formats that enable
sharing, visualization, and metadata analysis.

• The prototype may annotate data and objects automatically with se-
mantic metadata if the required information is explicit or if implied by
reasoning. It must be done manually if crucial information is missing
or needs refinement.

• The prototype shall prompt semantics-related messages and warn-
ings while an analysis is carried out. Users may also query for se-
mantics and provenance any time during and after the execution.

Objective 2: Enable meaningful communication of spatio-temporal
analysis

The meta-information that the prototype communicates shall facilitate a
domain-specific understanding of spatio-temporal data analysis. The in-
formation shall emphasize meaning, purpose, and function of data and pro-
cedures that form part of the analysis. Precisely, the information shall en-
compass the following aspects:

• Research assumptions about the hypothetical process that generates
observed data, in particular, how and why data was generated or trans-
formed.

• The meaning of individual spatio-temporal datasets, in terms of their
representation, function, and purpose.
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• The validity of data generation and transformations in terms of mean-
ingfulness by evaluating function and purpose of their input data. Va-
lidity checks may further compare the de facto semantics of an ex-
ecuted procedure with previous semantic assumption stated by the
user-researcher, i.e. the expected semantics.

• User-notification about semantic inconsistencies and missing assump-
tions on observations and hypothetical processes, if an analysis can-
not be assessed in terms of meaningfulness without uncertainties.

Objective 3: Demonstrate the solution on common analytical prob-
lems of Spatial Statistics

This work shall demonstrate the prototype by applying it to selected use
cases that deal with common analytical problems of Spatial Statistics. These
use cases shall consist of analyses derived from published scientific works.
The use-case analysis shall be functionally equivalent to the approach pre-
sented in the publication, which assures that the use case has a certain de-
gree of significance and approval by the research community.

For demonstration purposes and as a concession to the limited scope of
this thesis, the use cases may be simplified and reduced to certain aspects
of the originally published analysis.

Objective 4: Evaluation of the semantic framework

The overall findings of this work shall be evaluated against the research
objectives according to the requirements set here. As a requirement to the
research aim, the findings shall be summarized, and thus conclusions to the
research questions shall be drawn.

1.4 Research Questions

Arising from the research aim and objectives, four prevalent questions be-
come apparent; Addressing them is the function and purpose of this work.

1. How can the generative algebra introduced by Scheider et al. (2016)
be possibly implemented in a software environment for Spatial Statis-
tics?

2. How can research assumptions about observations and the hypotheti-
cal processes that generate them be made explicit in a spatio-temporal
analysis?

3. How can it be ensured that spatio-temporal data generation and deriva-
tion operations are meaningful?

4. How can the meaning and purpose of spatio-temporal analysis and
their components be communicated and shared?
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1.5 Structure of this Work

Chapter 1 provides a background about the subject of this work. It deter-
mines problems and open research questions in this context and accord-
ingly determines research objectives of this work, which are described re-
garding their requirements. It concludes with four research questions that
are derived from the research objectives and steer this thesis in its general
direction.

The following Chapter 2 introduces related works in addition to those
works already mentioned in the previous chapter. Many of these works
inspired this research. Hence they are referred to in the following chapters
as well in order to illustrate or explain statements made by this work.

Chapter 3 explains the general approach taken by this work, including
how the research objectives and -questions are addressed and which exist-
ing works, concepts and software are applied. The chapter also explains
which alternative approaches were not taken and why.

Chapter 4 introduces the ’SpatialSemantics’-package in R, which is the
aimed implementation of a framework for semantic provenance of spatio-
temporal analysis. It thus corresponds to research objective 1.3. Also it cor-
responds to the research objective 1.3, because the implementation includes
functionality that enables meaningful communication of spatio-temporal
analysis.

Chapter 5 demonstrates the usage of the R package and applies it to
three use case analyses that address common analytical problems of Spatial
Statistics. The chapter shows that using the package yields useful results
regarding semi-automated creation of semantic meta-information. There-
fore the package is a contribution to meaningful communication of spatio-
temporal analysis. The chapter corresponds to research objective 1.3 and
expands upon the research objectives 1.3 and 1.3 by giving practical exam-
ples in this regard.

Chapter 6 evaluates the results of this work by comparing them with the
research objectives 1.3, 1.3, and 1.3. Consequently, the chapter is divided
into three sections that each correspond to one research objective. Each sec-
tion matches the requirement of the objective with the results of this work
and thus concludes on whether the particular research goal is considered
fulfilled. It also mentions restrictions of this fulfillment if there are any. The
chapter itself corresponds to research objective 1.3.

Chapter 7 addresses challenges of this work and expands upon the re-
strictions mentioned in Chapter 6. It discusses pros and cons of the current
solution and provides new ideas related to the outcomes of this work that
can be addressed by further works.

Chapter 8 draws the final conclusions of this work by addressing the
research questions stated in the beginning. It expands upon the research
objective 1.3 because the conclusions are drawn from the evaluation of the
research results in Chapter 6.



9

Chapter 2

Related Works

This chapter introduces related works in the field of provenance and se-
mantics. The reference to semantics is kept short because semantics and
their particular requirements in the field of Spatial Statistics were already
discussed in the background section 1.2. Section 2.2 emphasizes particular
approaches to enable provenance tracking in R that inspired the develop-
ment of the ’SpatialSemantics’-package presented in Chapter 4.

2.1 Provenance and semantics in data science

Many workflow management systems and workbenches already support
the collection of provenance information, for instance, Kepler (Altintas, Bar-
ney, and Jaeger-Frank, 2006), VisTrails (Scheidegger et al., 2008), the Trident
(Barga et al., 2010) and Taverna (Alper et al., 2013).

The Trident1 is a scientific workflow workbench based on the Windows
Workflow Foundation (WF), which is a workflow engine and library em-
bedded in the Windows operating system. The Trident supports the prove-
nance retrieval with the Open Provenance Model (OPM) (Moreau et al.,
2011), which can be a predecessor of the PROV model introduced in section
1.2. The project is no longer active since 2013.

Taverna is an open source domain independent workflow management
system consisting of a suite of various tools; the engine is written in Java.
It can be used from the Taverna server, Taverna desktop workbench or as
a command-line tool. Taverna also provides interfaces to other software
and tools, including the R environment for statistical computing (R Core
Team, 2016). In the past, support for the OPM model and a data model
for the Janus provenance model (Missier, Sahoo, et al., 2010) were imple-
mented. The Taverna-PROV plugin currently enables provenance record-
ing using the PROV model (Gil, Miles, et al., 2013) and the Resource De-
scription Framework (RDF) (Klyne and Carroll, 2004). Furthermore, the
PROV model is extensible and can be enhanced with domain-related se-
mantics (compare with section 1.2).

PROV and RDF are both standards recommends by the World Wide
Web consortium (W3C). Implementing these standards allows publishing
provenance metadata according to the principles of Linked Open Data (LOD)
so that they are accessible from the Semantic Web. It also enables usage of
other semantic technologies implementing W3C standards, so that prove-
nance can be analyzed using the SPARQL query language (Group, 2013).

1The web site of the no longer active Trident project is available at
https://tridentworkflow.codeplex.com/ (Last access on Sept. 19th 2016).

https://tridentworkflow.codeplex.com/
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In deviation from how provenance is captured by Taverna and the Tri-
dent, Plale, Cao, and Aktas (2011) claim that provenance capturing is a
standalone activity and presented Karma2, a provenance system that is in-
dependent from workflow systems and free of the assumptions that work-
flow systems have. The Karma system has been applied to geoscientific
workflows, notably by (Jensen et al., 2013). The system consists of four dif-
ferent layers: The Provenance Creation Layer (1) is an interoperability point
to the application from which provenance is captured. It generates prove-
nance events which are received by the Capture layer (2). The capture layer
provides API and web services for capturing provenance and passes re-
ceived provenance events to the Representation layer (3). The representation
post-processes the data and stores it in an organized form. It also applies
reasoning so that knowledge can be inferred from the data that is not di-
rectly apparent. The Access Layer (4) interacts with the representation layer
and provides tools and an interface to the user. The Karma system has been
applied in several cases to geoscientific workflows, notably by (Jensen et al.,
2013).

2.2 Provenance in R

(Lerner and Boose, 2014) take a stand that opposes most of the aforemen-
tioned approaches: They argue that existing provenance systems pose a
high technological barrier to scientists. Amongst other examples, they men-
tion Kepler, Taverna, and Vistrails. The paper explains that in order to cap-
ture provenance, scientists have to adopt these additional tools and tech-
niques that may not work well with the software that they are accustomed
to use. For this reason, Lerner et al. propose to implement provenance
collection capabilities in the tools that scientists are actively using. They
present a set of tools made for collecting, visualizing and querying prove-
nance data from commands or scripts executed in R. The toolset consists
of an R package named RDataTracker and a standalone visualization tool
called DDG explorer. The approach of provenance collection is semi-automated:
users add calls to functions from the R package to their R script or type
then interactively in the R command line interface. When these functions
are executed, they evaluate the runtime-state of R, including variable name
bindings and the R command history. The library further provides means
to structure an R script into individual sections, called procedures. The
recorded provenance is represented as data derivation graph (DDG). Nodes
are either procedures, R expressions, or data that is read or written. Pro-
cedures are collapsible nodes that provide a layer of abstraction and en-
abling scientists to view the (manually within the script) annotated deriva-
tion graph in different levels of details. Lerner et al. oppose a fully auto-
mated retrieval of provenance information because the data may become
voluminous if all intermediate values of the execution are saved. Instead,
they propose to collect only data that has significant value to the scientists.
Hence they seek a powerful payback for a small investment on the part of
the scientist.

2Kadmandu, the successor of Karma, is W3C compliant and available online at
http://d2i.indiana.edu/provenance_komadu (Last accessed on Sept. 19th, 2016).

http://d2i.indiana.edu/provenance_komadu
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Another effort to implement provenance capabilities in R was formerly
presented by (Silles, 2014). In his work, he implemented provenance capa-
bilities in CXXR, which is a variant of the R language and environment that
is reengineered in C++.3 Provenance is obtained during the execution using
hooks in the call-interpreter-loop of R, i.e. the runtime state of R is evalu-
ated each time after a new expression is entered in the R console. Users can
interactively query the provenance of variables using the functions prove-
nance and pedigree. When a user thus queries the provenance of a variable
x, the corresponding function returns details about its current name bind-
ing and dependencies, including the expression by which it was created,
the date and time when it was created, the variables corresponding to the
data from which x was directly derived (parents) and the variables which
were created in dependence of x (children). The pedigree-function returns
a list of all those expressions which lead up to the creation of x so that x
can be reproduced by re-executing this sequence of commands. Silles also
demonstrated how to represent provenance data from CXXR by the W3C
PROV model and how to export and serialize it in RDF.

3The successor of CXXR, named Rho, is actively developed at the moment and as a pro-
totype available on https://github.com/rho-devel/rho (Last access on Sept 19th, 2016).

https://github.com/rho-devel/rho
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Chapter 3

Methodology

3.1 Overview

This work addresses a field of research with little has been addressed be-
fore, especially in a practical manner. It relates to semantic provenance for
Spatial Statistics and the subject of Meaningful Spatial Statistics. Basic re-
search on this topic has been carried out by Scheider et al. (2016) resulting
in an algebra for modeling data generation and transformation processes in
Spatial Statistics. At the current stage, the modeling algebra is considered
incomplete by their authors. A formal proof of completeness does not exist
yet and demonstrations were only done on an abstract level (Scheider et al.,
2016, p. 2000). This thesis presents applied research that seeks to put the al-
gebra into practice and thus solve communication problems when dealing
with spatio-temporal data analysis. It is the first attempt to implement the
algebra in a software environment for Spatial Statistics that also involves
an automated generation of derivation graphs.

Because little has been done in this field, an unstructured exploratory
approach is chosen that allows much flexibility in research. A structured
mode of inquiry, for instance, a controlled experiment on communicating
data analyses to researchers is rejected because of the limited scope of this
master thesis and because such labor-intensive investigation approaches
are more promising when the research fundamentals are fairly elaborated.
The approach can be classified is qualitative work, because the research
questions are not addressed with any quantitative analysis.

The remainder of the chapter is organized as the following: First, the
approach is outlined and described how research objectives and questions
are addressed in this thesis and why they are addressed in this way. In the
next section describes a couple of alternative approaches and describes why
they were rejected. Afterwards, the research foundations that are incorpo-
rated in this thesis are described, which in essence consist of the modeling
algebra. The final section explains the choice of software that was used to
implement the prototype

3.2 General approach

In order to address research question 1, an extension package for the R lan-
guage and end environment for statistical computing (R Core Team, 2016)
was created. This package consists of a software prototype for capturing
semantics and provenance of spatio-temporal analyses and makes use of
the modeling algebra introduced above.

During the development process a bottom-up strategy was followed:
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(1) At first, R was extended with functional components that enable
the collection of provenance information while an analysis is carried out
over the R command line. From this information, a generic data derivation
graph is computed that maps all data i.e. data sets, literals (e.g. strings,
numbers, logical values), unevaluated functions and function arguments to
object nodes and maps all calls, i.e. function calls and primitive operations
to call nodes. Each call node is linked to in- and output with corresponding
arrows so that the derivation history of each data piece can be retraced by
traversing the directed graph upwards to its parent nodes.

(2) Second, enriching the graph with semantic annotations was enabled.
At first, annotations were added manually to some example graphs, mainly
corresponding to use-case 5.1. Then functional components were imple-
mented that automatically infer as many of these annotations from the ex-
isting metadata, basically data attributes and data types. Afterwards, se-
mantic information was identified that could not be inferred with the avail-
able data. As a consequence, functional components were implemented
that facilitate providing user-annotations to data. This particular activities
target research question 2 (i.e. how to make research assumptions explicit)

(3) The third step in the approach addressed research question 3 (how
to ensure that particular operations are meaningful): a mechanism for de-
tecting errors and missing assumptions were implemented. In order to do a
semantic assessment, it first has to be assured that all required metadata the
datasets involved in an analysis is available. If not, corresponding warn-
ings are prompted to the user. It also was addressed that this missing or
ambiguous information is reflected in the derivation graph. Provided that
all semantic information is available, semantic validation can be carried out
when an analysis is executed. Chapter 4 explains how this is done.

(4) Finally, the prototype was tested on various R scripts and on the
use-cases (5). Bug-fixes and feature improvements where applied when
this was necessary.

In order to evaluate the research activities and results, four research ob-
jectives were declared alongside with individual requirements on when an
objective is considered fulfilled (see section 1.3). Therefore, the research
findings were described and matched against the mentioned requirements
(Chapter 6).

The evaluation in particular concerns the implementation of framework
for semantic provenance of spatio-temporal analysis (technical requirements,
research objective 1.3), enabling meaningful communication of spatio-temporal
analysis (semantic requirements, research objective 1.3) and how the proto-
type is demonstrated (use-case requirements, research objective 1.3)

The fourth research objective 1.3 is the evaluation itself. As stated in
the introduction, this goal is not fulfilled just by matching all requirements
with findings but also requires drawing meaningful conclusions about all
four research questions from those findings (see chapter 8). Most impor-
tantly, a conclusion should be drawn on question 4, on how to communi-
cate and share meaning and purpose of spatio-temporal analysis and their
components. The answer will be the overall résumé of this thesis.
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3.3 Alternative approaches

Establishing a completely automated mapping from an analysis in R to a
spatio-temporal derivation graph as specified by Scheider et al. (2016) ex-
ceeds by far exceed the scope of this thesis. The associated challenges and
further work are described in chapter 7. In this regard, a bottom-up ap-
proach is the fastest strategy to produce valuable intermediate results. As
shown in chapter 4 and 5, the prototype already offers much reusable func-
tionality that can be applied to many R-scripts.

Instead of employing a bottom-up approach, the prototype could be
implemented using a top-down of mixed bottom-up/top-down strategy. A
top-down strategy would be to start with an abstract use-case that can be
expressed with the modelling algebra, then to create a derivation graph and
an R script that exactly match the abstract use-case, and then to build a soft-
ware prototype that generates this exact derivation graph from the R script,
starting from designing interfaces and the overall software architecture.

A top-down approach was generally rejected for various reasons: As
the algebra has little been put into practice before, we do not exactly know
what the algebra can express and what it cannot express. Therefore, start-
ing with a practical use-case analysis that is not manipulated according to
the algebra and as close as possible to common practice is the best strategy
to explore patterns of meaning that cannot be expressed yet Findings can
induce refinement and improvement of the modeling algebra. Starting the
development with designing software components and interfaces is only
mandatory for large software projects, but it can be neglected for develop-
ment in this scope.

It is common practice in software engineering to do a detailed require-
ment analysis ahead of developing software. Such requirement analyses in-
volve studying of use-cases or stakeholder-interviews. The objectives and
requirements of this work are not deduced from such practices, but neither
they are arbitrary: They are in accordance with problems and needs stated
in the background chapter 1.2 that were previously expressed in accredited
scientific publications. It is also shown in the related work chapter 2 that
other scientists addressed similar problems in neighboring research fields.
On the other hand, the use-cases exemplified in chapter 5 suggest an added
value to the field of Spatial Statistics which in hint-sight also justifies the
research objectives. Finally, a strict software engineering approach was re-
jected because this work does not represent a software project. Its major
outcome neither is a software product. The prototype is a means to exem-
plify the modeling algebra in an environment for Spatial Statistics and the
major outcomes are scientific conclusions to the research questions stated
above.

Another approach to addressing the overall research and aim and espe-
cially research question 4 would be a structured user study on the mean-
ingful communication of analysis. Even without a working software proto-
type, the software could be pen-and-paper based: For instance, participants
would receive a printed R script compiled together with all feasible analy-
sis results, i. e. plots and printed messages as they are rendered by Sweave
or knitr (See section 2.2). Next, they would have to answer a questionnaire
about this analysis. Some of these questions may concern the meaning and
purpose of particular datasets or whether they consider the analysis itself
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as meaningful. Participants would also answer self-assessment questions
on how good they understand the analysis. The study would be evalu-
ated regarding how many right answers the participants give and in terms
of the participants’ self-assessment. The setup would be manipulated by
dividing the participants in to groups and handing some participants sup-
plemental information material to the analysis, such as a data derivation
graph. By comparing answers from participants who had supplements and
with those who had none, conclusions could be drawn upon which kind of
representation of analysis semantics improve an understanding and thus
mediate information about meaning and purpose.

Such approaches were rejected because they do not address questions
about how to implement the algebra by Scheider et al. (2016) and how to
ensure that particular operations of an analysis are meaningful. Even if
the study could be done without a prototype it would be beneficial to do
research on these questions first. The setup is far more convincing if partici-
pants are handed derivation graphs that are real, not just in an abstract way,
derived from an R script. A user study then could evaluate both, usability
of the prototype and expressiveness of spatio-temporal derivation graphs.

Combining both approaches, that is developing a prototype and then
carrying out a user study with the prototype, was rejected because it would
exceed the scope of this thesis. As the discussion shows (chapter 7), this
research had to address many technical and conceptual challenges. Reduc-
ing the development time in favor of user studies would lead to results of
minor significance. As stated above, this research explores a problem that
little has been addressed before. It aims to suggest a practical solution and
thus provide well-elaborated intermediate results to be refined in further
work, not to research one problem with the pretense of completeness.

3.4 Modeling data generation and transformation

This section explains the modeling algebra as specified by Scheider et al.
(2016), as far as necessary for the comprehension of this work. It also ex-
plains how and why the algebra was chosen as a research foundation. For
getting a throughout understanding of the algebra, please refer to the origi-
nally published work and the previous publications it is based on (Scheider,
2012; C. Stasch, Scheider, et al., 2014; C. Stasch, E. Pebesma, and Scheider,
2014; E. J. Pebesma and C. Stasch, 2014).

The introduced model describes the origins of data in terms of how they
were obtained by means of conceptualized data generation and derivation
procedures. Corresponding to the data’s purpose, these procedures imply
why data were obtained in terms of research assumptions. Corresponding
to the data’s function and based on the how and why of data generation, it
can be inferred which possible transformations and conversions can be ap-
plied. Likewise. it can be inferred if an operation applied to the (annotated)
data is meaningful.

Figure 3.1 shows the general approach taken by Scheider et al., which is
explained in the following paragraphs. Data are sets of organized symbols.
In terms of the algebra, data represent sets or list of tuples of referents.
A referent is a concept that is specified by a basic reference system type,
called basic type. Referents are created by data generation functions and can
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be derived from other referents that are inputted to those functions. Data
generations functions are constructed derivation functions and thus can be
derived from other generation functions. Note that deriving one referent
from another really means deriving one concept of data from another. The
derivation and generation of data are modeled by data generators, which are
functions that have generation functions as a conceptual input. Derivation
functions and data generators are based on a set of primitive operations,
which are the essential components of the algebra.

FIGURE 3.1: General approach to the algebraic model. An-
notations denoting a document section refer to the original

publication (Scheider et al., 2016, p. 1984)

Basic types

The algebraic model defines a set of basic reference system types, called
basic types: S, T , D, and Q stand for types of possible spatial locations,
moments, discrete entities and quality values respectively. The basic type
bool refers to logical or Boolean types and also expresses predicates.

Other basic types are constructed based on these notions. The suffix no-
tion set denotes a type of collections of basic types, for instance, an S set is
a type of collections of possible spatial locations. The basic type of regions
R is defined by an S set because regions are bound by polygons, curves
and/or collections of isolated locations. Likewise, a time interval I is de-
fined by a T set. Some basic types are constructed for attributing referents:
The type Extent is defined by a tuple of a region and time interval (R × I)
and describes the extent of something. An SExtent denotes a spatial ex-
tent. It is a special form of an Extent without a time reference. Occurs is
defined by a set of spatio-temporal points (S × T set) and conceptualizes
occurrences of something, i.e. a footprint or support.

Basic types and their terminology are described extensively in this sec-
tion because most of them will be used throughout the thesis for semantic
modeling.
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Generation functions

Generation functions are described by data generation types. Those types
are sub-divided into sets, selections, and partitions on the one hand, and
into spatio- temporal generation types on the other hand. The former group
consists of are Select, Tessel, Partition and Qstat. A Select, defined by
Select ⇒ S × T , selects a centroid or something alike from an extent.
Similarly, the derivations SSelect :: R ⇒ S and TSelect :: I ⇒ T se-
lect centroids from regions and time intervals, respectively. The function
Tessel :: S × T ⇒ Extent maps spatio-temporal locations to an Extent.
It is also possible to map locations to regions and moments in time to Re-
gions, which is done by STessel and TTessel respectively. The function
QPartition :: Q ⇒ Qset maps quality values to quality values and the
function Qstat summarizes quality values. Qstat conceptualizes many sta-
tistical operations like for instance calculating the mean, median or variance
of numeric values.

Spatio-temporal generation types are field, inverted field, lattice, event, and
object. Fields create quality values in space and time where each tuple S×T
maps to an observation Q, short S × T ⇒ Q. Examples of fields are taking
sensor observation in space and time and the interpolation of those values.
While fixing space results in a temporal field (TField), from which time se-
ries data can be generated, a spatial field (SField) maps quality values from
locations in space as time is fixed (S ⇒ Q). Lattices (R ⇒ I ⇒ Q) refer to
data aggregations, either in Space and Time or with either of them fixed.
They conceptualize for instance the generation of daily average tempera-
tures over a region.

The general definition of an inverted field (invF ield) is Q ⇒ Occurs.
An event is defined by D ⇒ S × Q and an object by D ⇒ T × S. Some
of these generation types are referred to in the remaining chapters, where
they are further explained within the context.

Derivation functions, data generators and primitive operations

Derivation functions and data generators are only a few times referred to
in this text, and if so they are explained explicitly. For instance, curry ::
(′a×′ b⇒ ′c)⇒ (′a⇒ ′b⇒ ′c) is a primitive operation used for converting
an unary function with a tuples of n referents input into an n-ary function
where each referent is an input. Note that ′a, ′b and ′c are variables for
arbitrary reference types. The operation settop :: (′a set) ⇒ (′a ⇒ bool)
converts a set of referents into a predicate.

Spatio-temporal derivation graphs

Figure 3.2 is an example of a derivation graph that was published by Schei-
der et al. (2016). It shows how a temporal field (TField) can be aggregated
from a Field. A TField is the conceptual foundation for generating time
series data. Diamond-shaped nodes refer to functions based on operations
from the algebra, i.e. derivation functions and data generators. Generation
functions and referents are specified by elliptic nodes. Furthermore, nodes
are colored white if they act as an input or output of a function and they are
orange for those functions that are called. Arrows from inputs to a called
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functions have empty arrowheads, while arrows from function to output
have filled arrowheads.

FIGURE 3.2: A derivation graph for generating a time series
from a Field (Scheider et al., 2016, p. 1994). Base types are
R, T , S, and Q. Derivation functions from the algebra are
denoted by diamond-shaped nodes. The node labeled with
R denotes a referent, all remaining nodes refer to generation

functions.

3.5 Applied concepts of provenance

The main approach to capture provenance information is to record and an-
alyze commands after they are executed. At the same time changes in the
user’s workspace are monitored, i.e. changes in the environment in which
in- and outputs of the executed analysis are stored. After enabling prove-
nance tracking, this process runs in the background without any required
user-interaction.

The recorded commands often comprise nestled and concatenated func-
tion calls and primitive operations. For displaying them in a derivation
graph, the commands are broken down to individual function calls and
their in- and outputs, which each map to one node. For improved readabil-
ity and in order to keep the graph simple, expressions that consist of only
primitive functions and operations not broken down into individual parts,
but treated as one call. For instance, the expression 4∗sin(x)+2 < 5 is kept
together as one call node, because it employs only simple mathematical and
logical operations.

The following paragraph describes how this work addresses challenges
that arise when deriving provenance-information from either scripted source
code or series of commands that are interactively executed from command-
line interfaces:

3.5.1 Mapping unique identifiers to variable names

Most programming languages refer to objects or values by variable names
(name binding). During program execution, the object that is bound to the
variable may be modified and the initial binding of the variable might be
overwritten with bindings to other objects. Therefore referring to actual
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data within a provenance record by just a variable name is ambiguous, be-
cause this name refers to different objects of different states and properties,
depending on the stage of execution.

It would be possible to assign randomly generated identifiers to an ob-
ject and refer to data by these id’s instead of the variable name. This solu-
tion is insufficient, however, because it does not take into account modifi-
cations of the same object. Also, it suggests itself to keep a reference to the
variable name, because on the one hand it facilitates relating source code to
derivation graphs, on the other hand, variable names are usually assigned
with a specific intention of the developer and therefore communicate an
implicit meaning of the data they refer to.

This work proposes to map instance identifiers (IIDs) to variable names,
which persistently refer to the data bound by the variable name within one
stage during the execution. This stage of execution is defined by the time
period between two modifications of a variable binding. An IID consist of a
variable name and an incremental version number. For instance, a variable
myVar maps to the IIDs myV ar ∼ 1, myV ar ∼ 2, myV ar ∼ 3 et cetera based
on the name binding and its modifications. IIDs are used in the derivation
graph in order to unequivocally refer to data and their (semantic) properties
during the execution of an analysis. Changes of the variable name bindings
in respect of different of stages of program execution are summarized in a
variable version record.

3.5.2 Detecting side-effects of function calls

This work retraces executions of data analyses by causal graphs which are
directed, hierarchic and acyclic. Arrows connect input data to calls (func-
tion calls and primitive expressions) and these calls to their output. On the
one hand, mapping function calls to these causal graphs suggests itself to be
straightforward because function inputs are defined in the function signa-
ture or argument list and because functions return either one or no output
by end of execution. On the other hand, side-effects of function calls pose a
challenge:

Many programming languages permit functions to make use of external
objects and also to call other functions that neither belong to the function’s
internals nor to the declared inputs. Functions may also create or modify
new objects in an external environment. In R, side-effects also comprise
printing messages/warnings and plotting/visualizing data during the ex-
ecution of a function.

This thesis proposes to detect all those side-effects that are useful for
comprehension of an analyses and to incorporate them as hidden in- and
outputs in derivation graphs. This proposal is constricted because detecting
all side-effects is not always useful, for instance, calls to internal functions
which are intentionally hidden from the users. It is rather proposed to only
detects side-effects that concern the the user’s dedicated workspace.

Detecting all possible side-effects in a language like R by far exceeds the
scope of this thesis, but work shows practical solutions to detect some of
them:
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• It can be heuristically detected whether a function call makes use of
external variables or functions, which is done by analyzing the func-
tion body.

• It can be detected whether a function call creates new data in the
workspace or overwrites existing variables with bindings to newly
created objects, which is done by monitoring changes in the workspace.

3.5.3 Syntax add-ons for derivation graphs

The derivation graphs modeled in this thesis comply to the above-shown
syntax by Scheider et al. (2016), but they are extended by additional syntac-
tical elements in order to express provenance-related patterns of data anal-
ysis that are difficult or impossible to express otherwise (see section 4.2.3),
for instance, side-effects of function calls (see previous section 3.5.2).

It can be argued that these modified graphs are downward-compatible
and hence can be reduced to the basic syntax defined by Scheider et al.
(2016), although this would implicate a loss of information. Further re-
search can thus adopt the herein solutions of this thesis without necessarily
incorporating the syntax add-ons. On the other hand, if they are found
useful, the syntax add-ons suggested by this thesis could also propagate to
further works.

3.6 Applied concepts of semantics

Semantic metadata is applied to the data derivation graph in a semi-automated
way. The approach combines automation based on inference/reasoning
and heuristics with user-defined annotations and validity checks.

3.6.1 Estimation of semantic types using heuristics

An analysis that does not incorporate semantic metadata still could be as-
sessed in terms of semantics. This assessment comprises heuristic assump-
tions on the semantics that a resource or a call could have and makes explicit
which semantic information is missing.

In order to achieve this, a heuristic mapping of semantic types is applied
(see appendix A). If a data-set is not explicitly annotated, the semantic type
of a dataset is estimated from its data type and other properties that can be
queried (see appendix A). In cases where the mapping does not allow an
assessment of meaningfulness because it is ambiguous or incomplete, the
estimated semantic type is prefixed with a bracketed question mark (?) and
a warning is prompted to the user that suggests to manually annotate the
data. This approach is consistent with the argumentation of Scheider et al.
(2016, p. 1981), where the authors expressed that data analysis crucially
depends on meta-information that goes beyond the data type.
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3.6.2 Posterior signature estimation

Dynamically typed programming languages like R, Haskell or MATLAB do
not formally define function signatures in terms of their data types. This en-
ables a very flexible and dynamic mode of programming because functions
can accept a variety of different input combinations.

Yet for the purpose of modeling and validating function semantics, it
is important to determine the semantic types of all in- and outputs. There
are two ways to achieve this: The first way is to force a pre-defined sig-
natures on the function. The function itself would throw an error during
a call and interrupt the execution if the inputs do not match certain se-
mantic types. This approach is disadvantageous because it undermines
the dynamic-typing paradigm of these languages and results in a loss of
flexibility in exchange for semantic control.

This thesis suggests an alternative approach, which is less oppressive.
It proposes to estimate the (implicit) function signature during runtime, i.e.
when the function is called with real inputs. An advantage of this approach
is that it favors posterior validation: Instead of enforcing semantic struc-
tures on the analysis and programming style, it leaves these structures un-
changed and provides semantic provenance, including warnings, for pos-
terior review and validation.

Within a similar context, Miles et al. (2007) suggests doing provenance-
based validation of e-science experiments on the web, i.e. using a ser-
vice oriented approach. In this approach, validation is also not considered
during execution, but rather afterward. This posterior validation based on
provenance data and a separately defined set of requirements and seman-
tics. The provenance record can be shared with third-parties that can per-
form validation by themselves using different sets of requirements without
the necessity to re-execute the workflow.

This thesis suggests two technical approaches in order to estimate func-
tion signatures during runtime:

• The first approach is to define wrappers around the functions that
act as a proxy and analyze the input arguments and function output
before the latter is returned. The wrapper would ideally have the
same signature and name as the function it is dedicated to, so that it
can be applied by existing code without much editing.

• The second approach is to add task handlers that are invoked be-
fore and/or after a command (or task) was executed. These handlers
could also analyze the function call along with inputs and outputs
that are available in the user’s workspace. (The R prototype only uses
posterior analysis after execution of a command)

Both of these approaches have been implemented as complementary
mechanisms in the ’SpatialSemantics’-package for R (see chapter 4).

3.6.3 User-defined semantics and validity checks

While the above-mentioned approaches could be fully automated, this sec-
tion addresses the insertion and customization semantic metadata by users
and developers, which cannot be fully automated.



Chapter 3. Methodology 22

Semantics need to be customizable because they reflect the researcher’s
assumptions and viewpoints on data and analysis. In this work for in-
stance, datasets that contain just georeferenced polygons are automatically
mapped to the semantic type R set and denote a set of regions. A user may
want to use data in order to describe the area in which a research team lo-
calized colonies of a certain animal species. In such a case, the researcher
would customize the semantics of this region as a spatial extent (SExtent),
because it represents the observation of a temporal point pattern, i.e. ob-
servations of animal colonies. Yet the type SExtent does not universally
apply to the data because the forest area might as well referred to in other
contexts.

In addition, spatio-temporal data is often not provided together with
metadata about their semantics and provenance. The output of many func-
tions used in data analysis is neither annotated. Therefore is beneficial if
user-researchers who conduct a data analysis could insert this missing in-
formation in a simple and concise way. It suggests itself to provide semantic
annotation capabilities in the environment he/she is normally using, which
is software for Spatial Statistics.

For these reasons, this thesis proposes to facilitate user-defined seman-
tics and validity checks as the following:

Annotation of datasets with user-defined semantics

It is proposed to implement functional components that allow the user to
annotate data with their semantic type and with data generation functions
involved in their creation. These assertions are then incorporated in the
semantic provenance, notably in the spatio-temporal data derivation graph.
It is further proposed to simplify this process by letting the user specify the
name of the data generation function (for instance Field, Object, etc.), from
which the semantic type of the data and the formal definition of the function
is inferred.

Because spatio-temporal data can comprise many different attributes
denoting subsets of observations, and because these subsets may all have
individual semantics, it should be possible to specify semantics also per
attribute rather than per dataset.

Customizable function wrappers

While the above-proposed function wrappers are used to estimate a func-
tion’s implicit signature, herein they are proposed for additional purposes:

• In order to match the semantics of a function with the users assump-
tions and expectations, it is proposed to let him/her optionally spec-
ify the expected call semantics of a function call. If the call does not
match these default semantics, a warning is prompted and the graph
is marked by the keyword INCONSISTENT.

• In order to let the users and developers implement optional add-hoc
checks for consistency or meaningfulness, it is proposed to let them
define a validator, which is a Boolean function that has the functions
inputs, outputs, call semantics and the expected call semantics (if any)
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as arguments. It is invoked by the function wrapper after each func-
tion call. It may throw errors or warnings during the execution based
on custom requirements. If the validator returns FALSE, a default
warning is prompted and the graph is marked by the keyword IN-
VALID.

• In order to annotate the output of a function, it is proposed to let the
user/developer specify a post-processor to a function that is invoked
after by the function wrapper after each function call. The purpose of
this post-processor is to add predefined annotations to the function’s
output. In order to simplify this process, a default-postprocessor may
be used that annotates the runtime semantics of the function as a se-
mantic procedure associated with output’s semantic pedigree.

3.7 Software approach: R and Graphviz

The R language and environment

The ’SpatialSemantics’-package introduced in chapter 4 is implemented in
the R language and environment for graphics and statistical computing
(version 3.3.1) (R Core Team, 2016)1. R was chosen because it has estab-
lished itself as a widely used tool across many scientific communities. It
has a large community of users and developers that gather on dedicated
conferences like the UseR!. Users and developers frequently communicate
over subject-specific mailing lists.2,3 Notably the R-SIG-geo addresses a Spe-
cial Interest Group on using Geographical data and Mapping.

The R environment is completely open source so that anyone can re-
view the source code of any of its components. The language itself is well-
documented (R Core Team, 2000; Wickham, 2014) and anybody can write
extensions in the form of R packages. The book ’Extending R’ (Chambers,
2016) describes extensively how this can be done. Analyses carried out in R
are generally reproducible by the R script, although it requires sharing also
the input data. If an analysis is transferred from one software installation
to another it also has to be ensured that the used R version and all library
versions are compatible.

Many works and publications address specifically Spatial Statistics in
R, for instance, Baddeley, Rubak, and Turner (2015), Hengl (2009), and E. J.
Pebesma (2004). The sp-package (R. S. Bivand, E. Pebesma, and Gómez-
Rubio, 2013) comprises many classes and functions for spatial data, pro-
viding an infrastructure for handling spatial polygons, grids, points and
lines that is re-used by many other packages and which is also incorpo-
rated in the use-cases of this thesis 5. Thanks to the R-community and their
achievements, it was possible to base the use-cases in directly on published
research in Spatial Statistics that was carried out with R.

1R software can be obtained online on https://www.r-project.org/ (Last access on Sept.
14, 2016).

2An analysis of the R-help mailing list by David Smith (2009) is online available at
http://blog.revolutionanalytics.com/2012/08/an-analysis-of-the-r-help-mailing-list.html
(Last access on Sept. 13, 2016).

3A listing of official R mailing lists is available at
https://www.r-project.org/mail.html (Last accessed on Sept. 11th, 2016)

https://www.r-project.org/
http://blog.revolutionanalytics.com/2012/08/an-analysis-of-the-r-help-mailing-list.html
https://www.r-project.org/mail.html
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Recent work on the subject of meaningful Spatial Statistics was also pro-
totyped in R (C. Stasch, Scheider, et al., 2014) 4 and resulted in the ’mss’
package 5.

R packages and components for capturing provenance

Some specific components and additional packages were incorporated in
the software prototype (Chapter 4) for the purpose of capturing prove-
nance. R task handlers (R Core Team, 2016, p. 550-554) 6 are incorpo-
rated because they allow defining custom callback functions which are in-
voked after each top-level task (command) entered into the R command
line. Once the callback is activated, the callback is executed invisibly in the
background while the analysis is carried out. This mechanism is crucial to
the provenance recording of the prototype. One disadvantage of these task
handlers is that they currently do not work in batch mode or when execut-
ing scripts with the demo or source - functions. This poses considered only
a minor issue to the implementation, as it does not encumber the purpose
of this thesis.

The implementation also makes use of the R packages codetools (ver-
sion 0.2-14), CodeDepends (version 0.4-2), stringr (version 1.1.0), graph
(version 1.50) and Rgraphviz (version 2.16.0).

The package CodeDepends (Lang, Peng, and Nolan, n.d.) provides tools
for code analysis and is used to determine inputs and outputs of a partic-
ular command. The codetools package (Tierney, 2015) also provides code
analysis tools and was specifically used to detect global variables and func-
tions referred to in function bodies. The stringr package (Wickham, 2016)
is used for string manipulation because it provides simple and consistent
wrappers around common string operations.

The graph package (Gentleman et al., 2016) provides data structures
to handle different types of graphs in R. Rgraphviz (Hansen et al., 2016)
bridges between R and Graphviz and builds upon the graph package. It
provides the ’Ragraph’ format, which extends the existing graph data struc-
tures with graphical attributes and plotting capabilities. Graphs can be
exported in various data formats, notably the ’dot/gv’ format utilized by
Graphviz.

Graphviz for graph visualization and export

Graphviz (Gansner and North, 2000)7 is an open-source software for visual-
ising graphs. The visualization of pedigree with R and GraphViz has been
formerly demonstrated by Zhao (2006), associated with research on genet-
ics and population analysis. Graphviz makes use different algorithms for

4 Tools on ’Meaningful Spatial Statistics’ are referred to on
http://meaningfulspatialstatistics.org/tools/ (Last access on Sept. 11, 2016).

5 The ’mss’ package is available on GitHub:
https://github.com/edzer/mss (Last access on Sept. 11, 2016).

6An exhaustive description of the task callback mechanism is online available in ’Top-
level Task Callbacks in R’ by Duncan Temple Lang (2001):
https://developer.r-project.org/TaskHandlers.pdf (Last access on Sept. 11, 2016).

7Resouces and throughout documentations of Graphviz are available online at
http://www.graphviz.org/ (Last access on Sept. 14, 2016).

http://meaningfulspatialstatistics.org/tools/
https://github.com/edzer/mss
https://developer.r-project.org/TaskHandlers.pdf
http://www.graphviz.org/
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graph layouts. The visualization is customizable by a large set of graphi-
cal attributes. The ’dot/gv’ used to serialize Graphviz graphs can be con-
verted into various common graphics formats like pdf, png, svg and jpeg.
Graphviz can be used with many programming language bindings and var-
ious graphical user interfaces. 8

8I recommend using the XDot viewer for Ubuntu for basic interactive visualization,
zooming and panning of dot-graphs. Instructions are online at
https://apps.ubuntu.com/cat/applications/quantal/xdot/ (Last access on Sept. 15, 2016).

https://apps.ubuntu.com/cat/applications/quantal/xdot/
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Chapter 4

The ’SpatialSemantics’-package
for R

’SpatialSemantics’ is a prototypical R package for capturing the semantics
and provenance of spatio-temporal data analyses. It extends R towards a
provenance-enabled, semantic-aware system for Spatial Statistics and there-
fore implements the concepts introduced in the sections 3.5 and 3.6 of the
methodology in chapter 3.

The package records provenance through task-callbacks as commands
are executed on the R-console. Part of this provenance information is a
version history maintained for each variable that serves to answer impor-
tant provenance-related questions, namely where, when and how an object
has been created or modified. Based on the collected information a spatio-
temporal data derivation graph is constructed that describes all objects, op-
erations, calls and their parameters involved in the execution.

The graph is enriched with semantic annotations in compliance with
Scheider et al. (2016) (see section 3.4). These annotations enable an inter-
pretation of data in respect of their meaning and allow an assessment of
spatio-temporal analyses in terms of meaningfulness and semantic consis-
tency. The basic graph-syntax introduced by Scheider et al. was extended
in order to adequately represent provenance information (see section 3.5.3).

Spatio-temporal data derivation graphs can be visualized by the Rgraphviz-
package. Using Graphviz-capabilities, it is possible to export graphs in
many data formats, notably dot/gv, pdf, svg, png and jpeg (see section
3.7.

This chapter gives a comprehensive overview of the package and how it
is used. It shows how the graph-syntax was extended in respect of Scheider
et al. (2016) and elaborates the technical realization of the prototype.

4.1 Package installation

The package is included in the attached CD. 1

The package can be installed from online sources by using the following
code in R code.

LISTING 4.1: Online installation of the ’SpatialSemantics’
package

1 # install dependencies not hosted on CRAN
2 install .packages("devtools")

1The package is also hosted online, where it is actively developed at the moment:
https://github.com/MatthiasHinz/SpatialSemantics (Last access on Sept. 15th, 2016).

https://github.com/MatthiasHinz/SpatialSemantics
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3 devtools :: install _github(’duncantl/CodeDepends’)
4 source("https://bioconductor.org/biocLite.R")
5 biocLite("Rgraphviz")
6 #optional command, these dependencies should install automatically from

CRAN:
7 install .packages(c("stringr" , "codetools")
8 # install ’SpatialSemantics’ from GitHub
9 devtools :: install _github("MatthiasHinz/SpatialSemantics")

Alternatively, the packages and dependencies can be obtained installed
offline using the install.packages function according to the below following
schema. The devtools-package (Wickham and Chang, 2016) is not needed
in this case.

1 install .packages(<path/package.zip>,repos=NULL,type="source")

For reproducing the code examples in this chapter, it is also necessary to
install the sp-package (R. S. Bivand, E. Pebesma, and Gómez-Rubio, 2013).

1 install .packages("sp")

4.2 Package overview

The ’SpatialSemantics’-package currently exposes 15 functions as an inter-
face to the user. These functions can be categorized into functions for prove-
nance, utility functions and functions for semantics. They are explained in
the following sub-sections together with the related functionality.

4.2.1 Provenance functionality and utilities

Figure 4.1 illustrates the basic mechanism underlying the provenance record-
ing functionality and semantic inference in a typical sequence. It is based
on task callbacks (R Core Team, 2016, p. 550-554), which are invoked dur-
ing the read-eval-print loop that forms the basic command line interface of
R. Technical details about the loop are explained in the R language defini-
tion (R Core Team, 2000, p. 9, p. 45): When a user types in a command,
the text input is read until a complete expression is available. This expres-
sion is internally parsed into a call. This call is then evaluated. During this
evaluation process, R typically reads and manipulates data in the user’s
workspace (workspace:environment), which comprises the global environ-
ment and all subordinated environments (R Core Team, 2000, p. 20) 2. The
result is an evaluation value that is printed to the console (if it is not invisi-
ble). Before the task is completed and the parser awaits subsequent expres-
sions, a task call back is invoked. The callback (callback:SpatialSemantics)
is a previously registered function defined in the ’SpatialSemantics’ pack-
age. The function analyzes the previously evaluated expression and also
keeps track of changes in the user’s workspace. It actively annotates data in
the workspace with provenance- and semantic-related attributes and stores
metadata in the metadata-store, which is a separate environment within

2R stores data and functions locally in hierarchies of distinct environments. Examples are
the global environment (which is the root of the user’s workspace), package-environments
and the internal environment that a function encloses
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the internals of the ’SpatialSemantics’ package. Keeping metadata in a sep-
arate environment has the advantage that they are kept hidden in the back-
ground and persistently stored during the session unless the provenance-
record is purposely deleted. Later on, the metadata can be retrieved and
visualized as a data derivation graph.

FIGURE 4.1: Sequence of provenance recording and seman-
tic inference

Table 4.1 lists all functions useful for recording, querying and retrieving
provenance as well as some utility functions. They will be explained in the
following paragraphs.

TABLE 4.1: Functions for provenance and utilities defined
by the ’SpatialSemantics’-package

Function Name Description
enableProvenance
disableProvenance

Enable or disable provenance tracking

getScriptGraph Retrieve derivation graph for export and
visualization

getVersions Get history of a variable’s name bindings
(IID mapping)

provenance_history List of all recorded commands
reset_provenance Deletes all internally recorded prove-

nance and sets the tracker back to default
state

rewriteReplacementFunction Utility function that converts calls to re-
placement functions

spsem_internals Utility function for retrieving package in-
ternals

Provenance recording

Listing 4.2 shows a simple example of how to record provenance with ’Spa-
tialSemantics’.The code retrieves a spatial dataset named meuse from the
sp-package (R. S. Bivand, E. Pebesma, and Gómez-Rubio, 2013) (line 3). It
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then sets up the data as a spatial data set by defining the x and y columns
of the given data frame as coordinates (line 4). Finally, a new attribute/-
column named lzinc to the data by computing natural logarithms from the
existing numeric attribute zinc (line 4). The function enableProvenance (line
2) registers the callback function that executes provenance recording and
initializes the provenance-record, if necessary. The function disableProve-
nance (line 6) simply removes the callback from the register of callbacks.
Hence, all commands between the calls enableProvenance() and disableProve-
nance() (lines 2 and 6) are recorded. Commands before or after this do not
become part of the provenance record. This has the advantage that users
can restrict the recording to those parts of the executions that form part of
the analysis. As shown here, it is recommended to pre-load libraries (line
1) or define new functions from outside the recording-block. Also, the re-
trieval of provenance and semantics is normally not of interest (line 7).

In line 7, the recorded provenance graph is retrieved by a call to getScript-
Graph(). The graph is directly passed to the toFile function, which is defined
by the Rgraphviz package. toFile exports the graph as a dot-file that can be
externally visualized or converted int other formats using Graphviz. The
output of getScriptGraph() can also be directly visualized using the plot-
function of R, but some details of the graphs cannot be displayed, including
the semantic annotations. This derivation graph associated with Listing 4.2
is explained in section 4.2.3 of this chapter (Figure 4.3).

LISTING 4.2: Simple example of provenance recording
1 library (SpatialSemantics); library (Rgraphviz);library(sp)
2 enableProvenance() #recording starts here
3 data("meuse")
4 coordinates(meuse) <− c("x","y")
5 meuse$lzinc = log(meuse$zinc)
6 disableProvenance() #recording ends here
7 toFile (getScriptGraph() , layoutType="dot", filename="myDerivationGraph.dot"

, fileType="dot")

Query provenance

After recording provenance, the user may query certain provenance infor-
mation of the analysis. The history of all recorded commands can be re-
trieved by the function provenance_history (Listing 4.3).

LISTING 4.3: provenance_history: List all recorded com-
mands

1 > provenance_history()
2 [[1]]
3 data("meuse")
4

5 [[2]]
6 coordinates(meuse) <− c("x", "y")
7

8 [[3]]
9 meuse$lzinc = log(meuse$zinc)

A user may also want to query information about certain variables.
In the above-shown example, the variable meuse has been modified three
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times. Changes and modifications of a variable, precisely on its name bind-
ing, can be revealed by calling the getVersions function with the variable
name as an argument (Listing 4.4). The displayed information can be read
like a change- or version history of the variable. It contains information
about the ’class’ and ’semantics’ of the data that was associated with the
variable during one stage of execution. All provenance records refer to
these data by instance identifiers (IID) (See section 3.5.1), which are newly
created for each change of the name binding. The listing shows that the
variable meuse changed its class as well as semantics during the execution.
It also shows the commands by which it was changed.

Furthermore, the change history attributes to each row a timestamp,
showing the exact time when the binding was changed and it attributes a
record number (rec_num), which relates the change to the history of recorded
commands. The latter two attributes are not displayed in the listing in order
to keep the overview simple.

LISTING 4.4: getVersions: Display changes of name bind-
ings

1 #[c(−1,−6)] conceals the attributes ’rec_num’ and ’timestamp’:
2 > getVersions(meuse)[c(−1,−6)]
3 IID class semantics command
4 1 meuse data.frame Q set data("meuse")
5 2 meuse~2 SpatialPointsDataFrame (?)S x Q set coordinates(meuse) <− c("x", "y")
6 3 meuse~3 SpatialPointsDataFrame (?)S x Q set meuse$lzinc = log(meuse$zinc)

provenance information is added to the existing metadata when en-
ableProvenance() again. If a user wants to clear all recorded provenance
data in order to start recording a new analysis he can do so by calling the
reset_provenance function:

1 reset_provenance()

It was decided to expose two utility functions to the users, which can be
handy sometimes. However they are not mandatory to the package usage:
spsem_internals can be used to inspect the packages internal environment, in
which metadata and internal functions are stored. The function rewriteRe-
placementFunction is used by the parser internally. It is used to transform
calls to replacement functions into an equivalent, more parser-friendly syn-
tax, for instance:

1 > rewriteReplacementFunction(quote(coordinates(meuse) <− c("x", "y")))
2 meuse <− ‘coordinates<−‘(meuse, c("x", "y"))

Detecting side-effects of function calls

As the previous section 3.5.2 in the methodology chapter states, side-effects
of function calls can pose a challenge to obtaining provenance-information.
Nevertheless, the provenance recording mechanism incorporates two ap-
proaches to detect some of these side-effects.

(1) The first approach makes use of the codetools package (Tierney, 2015).
The package defines a function called findGlobals that inspects a function’s
definition and finds global functions and variables invoked or used in the
methods body. Global and functions and variables in this context are those
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that do not belong to the environments enclosed by the function, i.e. those
objects that are not local, but external. The callback function that is utilized
for provenance recording breaks expressions (the user input) down into dis-
tinct function calls. It then retrieves the definitions of the called functions
(if available, which is not the case for primitive functions) and then deter-
mines the globals using findGlobals. These globals are then incorporated as
hidden inputs and function calls in the provenance record.

(2) The second approach relies on monitoring changes in the workspace:
the metadata-store of the package keeps a temporary list of all variables
stored in the workspace (as returned by the R function call ls()). When the
callback is invoked, it compares the previous workspace content with the
current and determines those variables which are newly created. As an-
other means, the callback annotates each object when it is observed for the
first time with an attribute called ’isTracked’. Among those variables which
were previously apparent in the workspace, it can be detected that they
have been overwritten or modified if the ’isTracked’-attribute is missing. Fi-
nally, those modifications that were detected by workspace monitoring are
compared with those modifications that can be inferred directly form the
expression which was previously evaluated. Those modifications which do
not become apparent from the expression are considered side-effects. They
are Incorporated as hidden outputs in the provenance record.

It is important to note that both approaches are estimations. They are
not capable of detecting all side-effects but rather some of them. The second
mechanism is also imprecise insofar that the origin of a side-effect can be
narrowed-down to the top-level expression, but it cannot determine the
associated function call if the expression comprises multiple nestled calls.
Yet it is shown in this thesis that the derivation graphs are more precise
thanks to this functionality.

4.2.2 Semantic functionality

There are six functions exposed to the users which facilitate semantic func-
tionality. Part of the semantic functionality works without any user-interaction.
Even without explicit metadata available, semantic types can be propa-
gated using heuristics and inference (see sections 3.6.1 and 3.6.2). Section
3.6.3 explained that semantics, however, needs to be customizable. This
is not only because crucial semantic information is often missing, but also
because semantic metadata reflect on the researcher’s individual assump-
tion of the data and analysis. Therefore, the functions captureSemantics<-
, functionalType<- and addSemanticPedigree facilitate user-defined semantics
and validity checks, as explained in section 3.6.3. The remaining three func-
tions are used to query for existing semantics.

Inspecting and defining object semantics

The semantics of an object can be inspected by using either getSemanticOb-
ject, which returns a semantic type denoting what the data represents, or the
function getSemanticPedigree, which returns the semantic pedigree of an ob-
ject, an ordered list of all semantic procedures directly involved in the cre-
ation of a dataset. The record also shows if only part of the data was mod-
ified, by optionally referencing the attribute. Users can also retrace how
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TABLE 4.2: Functions for semantics defined by the
’SpatialSemantics’-package

Function Name Description
addSemanticPedigree Add semantic pedigree to data
captureSemantics<- Create semantic function wrapper
functionalType<- Add a functional type to the semantic pedigree

of data
getDefaultCallSemantics Pre-defined semantics of a function call
getObjectSemantics Estimate semantics of a given object
getSemanticPedigree Get semantic pedigree

the semantics were modified because the records include the correspond-
ing R command (see listing 4.10, explained below). The latter information
is not available if provenance recording was not activated while applying
semantics. Apart from this constriction, however, data can be annotated
both inside and outside of recording block.

In code listing 4.2 which was explained in the previous section, none of
the functions for semantics were incorporated yet, but the associated list-
ing 4.4 showed that the variable meuse is already annotated with semantics.
The output derivation graph (Figure 4.3) also shows that almost all nodes
already contain semantic annotations. However, during the execution of
the example, a warning appears after line 4, which is the following:

’No semantic annotation available for the object meuse. Assumend semantics
will be (?)S x Q set’

Code Listing 4.5 shows how the (current) object semantics of meuse can
be retrieved. The semantic type S × Q set is prefixed by a question-mark,
which means that the type is estimated based on heuristics and that crucial
meta-information about this object is missing.

LISTING 4.5: Get object semantics
1 > getObjectSemantics(meuse)
2 [1] " (?)S x Q set"

It is possible to replace this estimation by explicitly annotating the data
with an attribute of name ’semantics’ (Code listing 4.6). This will overwrite
any previously assigned semantic types too (which still can be reviewed
using getVersions and/or getSemanticPedigree). However, it is not recom-
mended to set semantics of complex spatio-temporal datasets in this way,
because information about underlying spatio-temporal would still be miss-
ing.

LISTING 4.6: Setting semantic types by attribute
1 > attr (meuse,"semantics") <− "’a set"
2 > getObjectSemantics(meuse)
3 [1] " ’a set"

Instead, it is advised to use either use the replacement-function function-
alType (listing 4.8) or the function addSemanticPedigree (listing 4.7 in order to
annotate datasets in respect of their generation procedures.
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Code listing 4.7 shows how to add the semantics of a log-transformation
to the semantic pedigree of a dataset. Often this is not necessary, because
semantics are inferred manually, at least for simple expressions such as a
log-transformation. The function addSemanticPedigree is made for defining
pedigree in a custom and flexible way: Users can define the name of the
generation procedure (name) and the signature of this procedure (proce-
dure). The function argument result_semantics describes the output of the
procedure in conjunction with a data generator. Often, a semantic proce-
dure just modifies an attribute of the dataset instead of the whole dataset,
e.g. the zinc-attribute of the meuse dataset, which is a Q set. In such cases,
two semantic attributes have to be specified, which are result_semantics
and parent_semantics. The former describes the targeted attribute only,
while the former describes the complete dataset which is modified. The
user can optionally specify the modified attribute (attr-argument). If it is
not specified, it will be assumed that the procedure modifies all attributes
of the dataset.

LISTING 4.7: Setting semantic pedigree manually
1 meuse = addSemanticPedigree(obj = meuse,name = "log", attr = "lzinc",

procedure = "S x Q set −> Q set", result_semantics = "Q set" , parent_
semantics = "S x Q set")

The function functionalType is dedicated to specify spatio-temporal gen-
eration types: The notion of functional types traces back to C. Stasch, Schei-
der, et al. (2014) and E. J. Pebesma and C. Stasch (2014), who described
spatial- and spatio-temporal data in terms of functions that expresses their
meaning. Within the context of this work, a functional type is defined
as the type of the spatio-temporal generation function which causes one
dataset to be in its current semantic representation. This work refers to the
spatio-temporal generation type definitions by Scheider et al. (2016), which
slightly defer from functional types as described in the above mentioned
sources.

If functional types are assigned, they become part of the semantic pedi-
gree of the data. The functionalType-function applies a straight-forward
mapping from the type name and definition to the arguments of addSeman-
ticPedigree (i.e. result semantics and the optional parent dataset semantics),
which is described in B). The mapping will be further discussed in chapter
7. Listing 4.8 shows how to set functional types either per attribute or for a
complete dataset.

LISTING 4.8: Set functional type
1 > #setting the functional type for certain attributes
2 > functionalType(meuse, attr = "zinc") <− "SField"
3 > functionalType(meuse, "zinc")
4 [1] "SField"
5 > functionalType(meuse)
6 NULL
7 > #setting the functional type for all data
8 > functionalType(meuse) <− "SField"
9 > functionalType(meuse, "zinc")

10 [1] "SField"
11 > functionalType(meuse)
12 [1] "SField"
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In order to add missing semantic to in code-listing 4.2, it suffices to spec-
ify the spatio-temporal generation procedure with functionalType. Code list-
ing 4.9 is a modified version of listing 4.2, where user-defined semantics are
applied. As mentioned above, a warning is printed after line 4. Therefore
the required semantics are supplied by the command in line 5.

LISTING 4.9: Minimal example of provenance recording
with semantics

1 library (SpatialSemantics); library (Rgraphviz);library(sp)
2 enableProvenance() #recording starts here
3 data("meuse")
4 coordinates(meuse) <− c("x","y") ## warning occurs here
5 functionalType(meuse) <− "SField" ## add functional type here
6 meuse$lzinc = log(meuse$zinc)
7 disableProvenance() #recording ends here
8 toFile (getScriptGraph() , layoutType="dot", filename="myDerivationGraph.dot"

, fileType="dot")

The semantic pedigree of a dataset can then be explored by getSemantic-
Pedigree. Listing 4.10 demonstrates this with respect of listing 4.9 on meuse.
It can be retraced that the unclear semantics of the initial dataset (result-
semantics-attribute in the first row) were re-redefined the functionalType-
function (command-attribute in the second row). A procedure called ’log’
(third row) then added or modified the attribute ’lzinc’ of the overal dataset.

LISTING 4.10: Inspect semantic pedigree
1 > getSemanticPedigree(meuse)[c("procedureName","procedure","result_attribute"

)]
2 procedureName procedure result_attribute
3 1 coordinates<− Q set −> Q set −> (?)S x Q set ALL
4 2 SField S −> Q ALL
5 3 log S x Q set −> Q set lzinc
6

7 > getSemanticPedigree(meuse)[c("result_semantics","parent_semantics")]
8 result_semantics parent_semantics
9 1 (?)S x Q set <NA>

10 2 Q set S x Q set
11 3 Q set S x Q set
12

13 > getSemanticPedigree(meuse)[c("rec_num","command")]
14 rec_num command
15 1 2 coordinates(meuse) <− c("x", "y")
16 2 3 functionalType(meuse) <− "SField"
17 3 4 meuse$lzinc = log(meuse$zinc)

Defining semantic function wrappers

The following paragraph explains how to define and semantic function
wrappers. Function wrappers in this work serve multiple purposes. They
are (1) posterior estimation of implicit function signatures (see section 3.6.2)
(2) to apply user defined consistency- and validity checks, and (3) to anno-
tate function outputs with pre-defined semantics (see section 3.6.3 for user-
defined semantics and validity checks).
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Figure 4.2 illustrates a call to a function wrapper by a sequence di-
agram: The semantic wrapper (wrapper:function) acts as a proxy to the
user. It is called by the same name and arguments as the wrapped function
(main:function). The proxy passes function all inputs directly to the main-
function, which processes the data and computes the output. The wrapper
then estimates the implicit function signature by inspecting the semantics
of all inputs and outputs using the getObjectSemantics-function. Then all
data, including the estimated semantics, are passed to the postprocessor
(postprocessor:function) this postprocessor is either user-defined or a stan-
dard generic function that annotates the output with semantic pedigree.
The semantics are then re-evaluated by the wrapper and matched against
pre-defined default semantics, if any. If the de facto semantics of the call are
conflicting with any of these defaults, a warning is prompted, because the
call semantics are inconsistent. All data and semantics are then passed to a
validator, which is an optional component. Validity of the operation is then
checked according to user-defined requirements. If the operation is graded
invalid, another warning is passed to the user. if provenance recording
is enabled, the wrapper passes all collected provenance and metadata to
the internal environment of the ’SpatialSemantics’-package, where they are
stored and incorporated in the data derivation graph. Finally, the annotated
output is returned from the function wrapper.

FIGURE 4.2: Sequence diagram of a call to a semantic func-
tion wrappers

In order to demonstrate the usage of function wrappers on a simple
example, the following code listings are defining wrappers of a simple log-
function. The log-function, as defined in the base-package of R, by default
computes the natural logarithm of a given argument x. Log is a primitive
function in R. Because primitive functions behave slightly different than
standard functions, the prototype does not allow to wrap them directly at
the moment. This is why listing 4.11 starts by defining a standard function
around log.

Standard functions can be wrapped by just applying the replacement
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function captureProcenance<-. This function creates a new function of iden-
tical name and signature in the user workspace and acts as a proxy to the
original function. Wrapping can be reverted by either deleting the wrap-
per (provided that the wrapped function does not belong to the global envi-
ronment or by calling captureProcenance(fun)<- FALSE, which will cause the
wrapper to replace itself with the wrapped function.

Code listing 4.11 first applies a wrapper to the log-function that is not
parametrized (line 5). This wrapper basically estimates the implicit func-
tion signature annotates the output by adding the function itself and its sig-
nature as a generation procedure to the output’s semantic pedigree. Func-
tion wrappers may have predefined default-semantics (expected seman-
tics). They can by queried by invoking getDefaultCallSemantics (lines 6 and
7). For the firstly defined wrapper, the function returns "dynamic", which
means that no default semantics are defined and the signature estimation
may vary during runtime. Using the ’semantics’ argument of captureProve-
nance, a user can specify one or more default signatures using semantic
terminology. This is exemplified by the lines 9 till 11.

LISTING 4.11: Define semantic wrapper with and without
default semantics

1 > library (SpatialSemantics)
2 > log = function(x){
3 + return(base :: log(x))
4 + } #direct wrapping or primitive functions is currently not supported
5 > captureSemantics(log) <− TRUE
6 > getDefaultCallSemantics(log)
7 [1] "dynamic"
8 > captureSemantics(log) <− FALSE
9 > captureSemantics(log, semantics = c("Q −> Q", "Q set −> Q set")) <− TRUE

10 > getDefaultCallSemantics(log)
11 [1] "Q −> Q" "Q set −> Q set"

It is also possible to define default semantics per function call. There-
fore, function wrappers have an ’semantics’-argument as well. Code listing
4.12 exemplifies this in line 7. If the semantics are specified per-call then any
previously defined default semantics are ignored for this call. The listing
also exemplifies consistency checks: if the estimated semantics during run-
time does not comply with any of the pre-defined default-semantics, warn-
ings are prompted (lines 3-6 and 7-9). Within the associated data derivation
graph, such calls are marked by the keyword INCONSISTENT. In the list-
ing, the first warning is prompted because the input does not comply with
default semantics (call in line 3) and the second is prompted, because the
call does not comply with the per-call semantics (line 7).

LISTING 4.12: Consistency checks on log-function
1 > input = 1
2 > attr (input, "semantics") <− "’a"
3 > result=log(input)
4 Warnmeldung:
5 In log(input) :
6 Inconsistent function semantics, given is ’a −> ’a but expected was one of

the following: Q −> Q, Q set −> Q set
7 > result=log(input, semantics = c("Q set −> Q set"))
8 Warnmeldung:
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9 In log(input, semantics = c("Q set −> Q set")) :
10 Inconsistent function semantics, given is ’a −> ’a but expected was one of

the following: Q set −> Q set

Further capabilities of semantic wrappers are postprocessors and val-
idators (Figure 4.2). Both are functions which can be specified or customized
by users and/or developers. Code listing 4.13 exemplifies this on the ex-
ample of the log-function: A postprocessor (lines 5-7) has the formal ar-
guments args (a named list of all inputs), output (the wrapped functions
output data) and semantics (a string denoting the estimated function sig-
nature). The function returns the processed output, which is intended to be
the wrapped functions output enriched with semantic annotations.

If a validator (lines 9-15) is specified, it is called after the postprocessor.
It has the same arguments, except that the estimated signature are updated
if semantics of the output were re-defined by the latter function. In ad-
dition the validator receives the default call semantics (as returned by the
function getDefaultCallSemantics). The validator is a Boolean function that
returns TRUE/FALSE if the operation is valid/invalid respectively. The
function may prompt individual warnings if the overal operation is not
valid by the user’s requirements. In any case of invalidity, a generic warn-
ing is prompted by the function wrapper and the function call that was
executed by the user is marked by the keyword INVALID within the data
derivation graph. The validator in the example checks if the wrapped func-
tion’s input consists of one or more quality values Q. If this is not the case,
the call log(input) is not meaningful and therefore invalid.

LISTING 4.13: Defining simple postprocessors and valida-
tors

1 log = function(x){
2 return(base :: log(x))
3 }
4 #define postprocessor:
5 postprocessor = function(args, output, semantics){
6 addSemanticPedigree(obj = output, name = "log", procedure = "Q −> Q", result

_semantics = "Q set")
7 }
8 #define validator :
9 validator = function(args, output, defaultSemantics, semantics){

10 in_sem = getObjectSemantics(args$x) # get semantics of input ’x’
11 valid = in_sem %in% c("Q", "Q set") # requirement
12 if ( !valid) {
13 warning(paste0("Invalid input of type " , in_sem,"! Expected Q or Q set"))
14 return(FALSE)
15 }
16 return(TRUE)
17 }
18 #create parametrized function wrapper:
19 captureSemantics(log, validator = validator , postprocessor= postprocessor) <−

TRUE

Code listing 4.14 puts the above create function wrapper of log into ac-
tion. Line 1 computes the natural logarithm of 1. The result (which is 0) is
then queried for semantic pedigree that was defined by the postprocessor
(line 2). The corresponding record is displayed in line 3 and it can be seen
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that the result data was defined Q set, i.e. a (singleton) collection of quality
values. Of course the descriptor can be fine-tuned to assign just Q in case
the input has length 1, but this definition suffices demo-purposes.

In lines 6-8, the log-function is again called with the argument 1, but in
this case the validator prompts a warning. Line 7 assigns the semantic type
D to the input value. D is a basic type used to refer to discrete identifiers,
mainly to identify objects and events. While it is generally assumed that
numbers refer to quality values Q (see Appendix A), computing natural
logarithms from identifiers D is not meaningful.

LISTING 4.14: Applying simple postprocessors and valida-
tors

1 > result=log(1)
2 > getSemanticPedigree(result)[1:4]
3 procedureName procedure result_attribute result_semantics
4 1 log Q −> Q ALL Q set
5 >
6 > input = 1
7 > attr (input, "semantics") <− "D"
8 > result=log(input)
9 Warnmeldungen:

10 1: In validator(args, output, semantics, call _semantics) :
11 Invalid input of type D! Expected Q or Q set
12 2: In log(input) : Post−validation of function call failed !

4.2.3 Graph visualization and syntax

This section describes how the ’SpatialSemantics’ package visualizes data
derivation graph and how they are interpreted. The basic graph syntax and
semantic terminology by (Scheider et al., 2016) have been explained in sec-
tion 3.4 of this work. The following section 3.5 explained the approach to
handle provenance information within this work. It closes with the pro-
posal of syntax add-ons to the existing graph representation in order to in-
corporate provenance information and to keep references to the underlying
source-code, with the intention to improve comprehension.

Figure 4.3 refers to code listing 4.2 in the beginning of section 4.2. It is
the visualization of the therein shown example of automated provenance
recording. It appears in this section in order to exemplify the graph syntax.
A curiosity of this graph is that meuse is referenced four times in nodes that
denote data (white nodes), but only the latter three occurrences refer to a
variable named meuse. The first occurrence refers to a literal value that is
the expression ’meuse’. The subsequent nodes labeled meuse, meuse 2 and
meuse 3 refer to an actual dataset, which has been modified three times
during the execution. The meuse-dataset is created by a call to the func-
tion ’data’, which does not returns the dataset explicitly but rather creates it
via a side-effect (dashed red arrow). Expressions from the command line
interface are generally mapped to the graph by breaking the down into
function calls and data according to its parse tree. Nevertheless, it can be
observed that some nodes do not refer to atomic expressions: the expres-
sions c("x",y"), log(meuse$zinc) and meuse$lzinc are not broken down into
individual parts, despite not being atomic. Expressions that only consist of
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primitive functions or operations are kept as one in order to keep the graph
simple and readable.

data
[Q ⇒ Q set]

meuse 
[Q set]

meuse

coordinates<-
[Q set ⇒ Q set ⇒ (?)S ⨉ Q set]

object

meuse~2 
[(?)S ⨉ Q set]

meuse~3 
[(?)S ⨉ Q set]

log(meuse$zinc)
[(?)S ⨉ Q set ⇒ Q set]

c("x", "y")
[Q set ⇒ Q set]

value

meuse$lzinc 
[Q set]

FIGURE 4.3: Simple derivation graph resulting from the
dot-file created by the code in listing 4.2

The following paragraphs explain the extended graph syntax as far as
it differs from (Scheider et al., 2016). It shall be pointed out that the syntax
is still downward-compatible and can be converted to the basic syntax, as
shown below.

Figure 4.4 shows possible appearances of graph nodes. In general, func-
tion calls or primitive operations are represented by orange nodes, while
data is represented by white nodes. In cases were function inputs are atomic
literals and not referred to by a variable (1), they are displayed as is. Any
data that is referred to by a name binding (2) is referred to by an instance
identifier (IID), which is composed of a variable name and an incremental
version number (see section 3.5.1. In the second line of the label always
appear the semantic annotation in brackets, except for case (1), in which it
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is omitted. Data may also be referred to by a simple expression (2), denot-
ing a subset of data (compare with Figure 4.6). In this case no explicit IID
reference is necessary because the parent dataset is referenced in conjunc-
tion as an input to the data. Function calls (3) are labeled with the name
of the called function and their semantic signature in brackets. In case the
node represents a call that consists of one primitive operations, the node is
labeled by the complete expression. The second column of the figure shows
how each of the representation can be converted/reduced to the basic syn-
tax.

FIGURE 4.4: Syntax of graph nodes

Figure 4.5 shows possible appearances of edges. While Scheider et al.
(2016) just differentiate between input- and output- relation, the graphs in
this work have a finer distinction of these relations. First of all, any inputs,
outputs or function calls that are side-effects of a corresponding function-
call are indicated by dashed arrows, which indicate that the relation be-
tween the nodes are not explicit by the code, but inferred or estimated.

Regular inputs (1) to functions or expressions are represented identical
to the basic syntax, except that they are annotated with the argument name
(<argName>) as defined by the function’s argument list, if available. If the
function is present as an object in the user’s workspace, derivation graphs
also specify a relation from the function to the call that invokes this function
(2), represented by a blue arrow. In terms of Scheider et al. (2016), this rela-
tion would correspond to a simple input, for example a generation function
that is input to a data generator or a derivation function. Output- relations
in this work (3) are represented by red arrows. This modification was sim-
ply applied for visual purposes to better distinguish the edges from each
other.

In R it is common to modify or read not one dataset as a whole, but a
fraction of it, i.e. a subset, which can be accessed by primitive operators
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FIGURE 4.5: Syntax of graph nodes

such as $, [, [[ and @. For representing these common cases of reading
and writing a subset, this work uses two patterns, which are displayed in
4.6. In case of reading or retrieval (1), the parent dataset is a direct input
to the subset-expression - a shorthand for explicitly representing the data-
access operation as a call. (2) In case a subset of an operator is modified,
the modified data is an output of the subset-expression with an implicit
relation of the original dataset to its modified version. In basic syntax, the
subset and original dataset would be concatenated to a new dataset.

The latter pattern is also apparent in Figure 4.3: The graph branches off
and joins together where subsets off the meuse-dataset are processed.

FIGURE 4.6: Syntax of reading/writing subsets
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Chapter 5

Use Cases

This chapter applies the R prototype described in chapter 4 based on the
methodology described in Chapter 3 on common analytical problems of
Spatial Statistics. It shows how this work can contribute to better commu-
nicate spatio-temporal data analysis. Therefore, this chapter presents three
use cases in each of the following sections. Each use case is derived from
scientific work that is already published.

The following sections all share a similar structure. First, they giving
an overview over the use case by describing the analytical problem, how
this problem is addressed by spatio-temporal analyses and which data and
utilities are used. It follows a subsection describing how the analysis is
realized in R and how it is interpreted in terms of semantics. The third
subsection describes in a detailed walk-trough how the ’SpatialSemantics’-
package can be applied to the use case. The use cases are evaluated in the
third section of Chapter 6.

5.1 Spatio-temporal aggregation of bird counts

5.1.1 Overview

A common analytical problem in Spatial Statistics is the aggregation of val-
ues over space and/or time. Such problems comprise for instance sum-
marizing daily mean temperatures from different measurement stations to
monthly averages or summarizing electoral results from electoral districts
to counties.

The herein presented problem requires aggregation over both, space
and time. The analytical approach was first published by R. S. Bivand, E.
Pebesma, and Gómez-Rubio (2013, pp. 156-161) and therein also demon-
strated in R. The data to be analysed origins from the North American
Breeding Bird Survey1. and contains observation counts of the Eurasian
Collared Dove (Streptopelia decaocto), which is an invasive bird species in
northern America. Since the 1980s, this bird occurs in the US-state of Florida.
For this state we would like to know how much the bird population in-
creased in 2 year periods between 1989 and 1999.

The dataset was first published by by Cressie and Wikle (2011). It con-
sists of two tables that can be downloaded from the book web site2. The
table ECDovelatlon.dat contains 253 locations were birds have been ob-
served, represented by latitude / longitude coordinates. Figure 5.1 shows

1North American Breeding Bird Survey: https://www.pwrc.usgs.gov/bbs/ (Last access
on Sept. 19th, 2016

2ftp://ftp.wiley.com/public/sci_tech_med/spatio_temporal_data/

ftp://ftp.wiley.com/public/sci_tech_med/spatio_temporal_data/ECDoveBBS1986_2003.dat
https://www.pwrc.usgs.gov/bbs/
ftp://ftp.wiley.com/public/sci_tech_med/spatio_temporal_data/
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those observation locations which are in or nearby Florida. Nevertheless,
observations are distributed over a larger area in northern America.

FIGURE 5.1: Bird observation locations near Florida

The table ECDoveBBS1986_2003.dat contains 18 columns and 253 rows.
Each row refers to an observation location, while the columns refer to the
years in which the observations were taken, i.e. from 1986-2003.

Hence, the overall dataset contains yearly bird counts per location over
18 years and 253 locations. In order to determine the population count for
the state of Florida in 2-year periods, it must be determined which observa-
tions fall within the state borders and to sum them up for every 2 years.

Table 5.1 shows the simplified result for the analysis as presented by
R. S. Bivand, E. Pebesma, and Gómez-Rubio (2013). It can be observed
that the population Eurasian Collard Dove steadily increased, and that the
relative growth rate over 2 year periods is exponential.

LISTING 5.1: Use case 1 - spatial prediction results
1 counts timeIndex
2 1989−01−01 3 1
3 1991−01−01 5 2
4 1993−01−01 92 3
5 1995−01−01 176 4
6 1997−01−01 860 5

5.1.2 Approach

The analysis makes use of the packages sp (R. S. Bivand, E. Pebesma, and
Gómez-Rubio, 2013) for spatial data handling, spacetime (E. Pebesma, 2012)
for spatio-temporal data handling, xts (Ryan and Ulrich, 2014) for repre-
senting time series data, maps (Richard A. Becker, Ray Brownrigg. En-
hancements by Thomas P Minka, and Deckmyn., 2016) for retrieving the
boundaries of the US-state Florida and maptools (R. Bivand and Lewin-
Koh, 2016) for converting the boundary data into the SpatialPolygons-class
from the sp-package.

ftp://ftp.wiley.com/public/sci_tech_med/spatio_temporal_data/ECDoveBBS1986_2003.dat
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Both tables from the North American Breeding Bird Survey are im-
ported into R by the read.tables function. They are then processed and
combined to a a spatio-temporal full lattice data frame (STFDF), consisting
of three independent slots for time, sp, and data.

A target geometry is built as a spatio-temporal full lattice (STF), which
has the same structure as the STFDF, except that it contains no data frame.
The target geometry consists of the Florida state boundaries, represented
by a spatial polygon and a time series consisting of dates from January
1989 to 1997, marking the beginning dates of each 2-year period. The data
these datasets are inputted to a function named aggregate, which performs
an aggregation over the target-geometry by summing up values over space
and time. The result is a time series dataset consisting of summed up bird
population counts for each 2-year period in respect of the US state Florida
(Listing 5.1).

A challenge is to describe the components of this analysis regarding
their meaning. According to the terminology by Scheider et al. (2016), they
can be interpreted as the following: Bird counts per year and location are
represented by a MarkedEvent, formally defined by D ⇒ S × T × Q. The
dataset itself consists of sets of point locations S, moments in time T , given
by year and bird counts as quality values Q. They are combined to a set
of tuples S × T × Q. A discrete identifier D that refers to the event (of
observation) is not explicit in the data.

The target geometry for the aggregation is simply a tuple of a region
(Florida boundaries) with a set of time intervals (2-year periods) R × I set.
No functional type needs to be assigned.

The time-series data that results from the aggregation is generated from
a temporal lattice TLattice :: I ⇒ Q, while the resulting dataset is a col-
lection of tuples of time intervals and quality values (bird counts), i.e. a
Q× T set.

The technical approach is outlined in Chapter 3, but will be illustrated
by this example for better comprehension. First, a to a data derivation
graph is recorded. It is then automatically populated it with heuristic se-
mantics a mapping from data properties (see appendix A). This process is
further automated by semantic inference (e.g. estimation of function signa-
tures). While the graph is created in the background, a user receives warn-
ings from the command-line. The derivation graph signals semantic am-
biguities which prevent an assessment meaningfulness of spatio-temporal
data generation with question marks. This helps the user to subsequently
assign semantic annotations where necessary and thus to refine the graph.

Writing semantic wrapper-functions with postprocessors can further au-
tomate the process because the functions’ output are thus annotated during
the function call. These functions also can be re-used for other purposes.
Alternatively, the user can annotate data manually by setting the functional
type (functionalType-function) to any spatio-temporal data sets that repre-
sent observations. Setting the semantics-attribute is suitable for all other
data that shall not be attributed regarding their purpose.

5.1.3 Implementation

The fully annotated R script referring to this analysis is included in ap-
pendix C. For simplicity, details about the data preprocessing part of the
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script are omitted in this text. The derivation graph also abstracts over these
procedures by starting recording directly when the spatio-temporal dataset
is created from locations (ecd.locations), a collection of dates (ecd.years),
and the observed data (ecd.data).

This use case demonstrates how warnings prompt to the user to revise
the semantics of the derivation graph by adding annotations. Figure 5.2
shows the warnings that occur when doing provenance recording with-
out applying semantic annotations. The user is prompted to review the
semantics of the spatio-temporal dataset (bird counts, named ecd.st) and
the semantics of the target space-time geometry (named target.st). Figure
5.2 shows the derivation graph resulting from this execution. Question-
marks appear for the aformentioned datasets as well as in the signatures of
the functions STFDF and STF (constructors for spatio-temporal objects), as
well as for the aggregate-function.

LISTING 5.2: Use case 1 - recording without annotations
1 > #Analysis starts here:
2 > enableProvenance()
3 > #Create space−time object of all bird counts
4 > ecd.st <− STFDF(ecd.locations, ecd.years, ecd.data)
5 Warnmeldung vom toplevel task callback ’1’
6 Warnmeldung:
7 In getObjectSemantics(var0) :
8 No semantic annotation available for object ecd.st . Assumend semantics will

be: (?) S x T x Q set
9 > #Create target−geometry to aggregate over Florida−state area

10 > # in 2−year periods
11 > target .years = ecd.years[c (4,6,8,10,12) ]
12 > target . st <− STF(FL, target.years)
13 Warnmeldung vom toplevel task callback ’1’
14 Warnmeldung:
15 In getObjectSemantics(var0) :
16 No semantic annotation available for object target . st . Assumend semantics

will be: (?) R x (T set )
17 > #execute aggregation
18 > ts = aggregate(ecd.st , target . st , sum, na.rm = TRUE)
19 > disableProvenance()

Listing 5.3 shows changes that were subsequently made on the R-script
in order to revise the initial semantic provenance. These commands are ex-
ecuted before the analysis is recorded. In this case it is not necessary to place
any annotation-functions directly inside the analysis-part. Instead, some
of the existing functions are replaced by wrappers: The STFDF-constructor
is wrapped by a function called STFDF.MarkedEvent that annotates out-
puts with the functional type MarkedEvent (the parameter parent = FALSE
causes that the discrete identifier D is not replicated in the dataset-representation).
This is achieved by the captureSemantics-function parametrized with a de-
fined postprocessor. Unfortunately, the captureSemantics-function cannot
be applied to the aggregate-function due to technical issues (compare with
7, first section). Instead, a simple wrapper is written manually that an-
notates the output as TLattice data. A similar wrapper is written for the
STF-constructor, with the difference that it annotates only the time-slot of
its output according to input. The semantics of an STF-object can be deter-
mined if the semantics of both slots (sp and time) are known (the semantics
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ecd.st 
[(?) S ⨉ T ⨉ Q set]

aggregate
[(?) S ⨉ T ⨉ Q set ⇒ (?) R ⨉ (T set) ⇒ Qstat ⇒ Q ⇒ Q set]

x

STFDF
[S set ⇒ T set ⇒ Q set ⇒ (?) S ⨉ T ⨉ Q set]

ecd.locations 
[S set]

sp

ecd.years 
[T set]

time

ecd.years[c(4, 6, 8, 10, 12)]
[T set ⇒ T set]

ecd.data 
[Q set]

data

target.years 
[T set]

STF
[R ⇒ T set ⇒ (?) R ⨉ (T set)]

time

target.st 
[(?) R ⨉ (T set)]

FL 
[R]

sp

ts 
[Q set]

sum 
[Qstat] TRUE

na.rm

FIGURE 5.2: Derivation graph without user-defined seman-
tic annotations

from the sp-slot are preserved from the input). Finally, it is necessary to
write a simple function named getTimeIntervals, which not only samples
time intervals from a given collection of dates, but also annotates the out-
put according to their meaning.

These functions are then incorporated in the analysis-part of the R-script.
The final, correctly annotated graph is displayed in Figure 5.3. Code listing
5.4 exemplifies the output of getSemanticPedigree when querying seman-
tics of the individual datasets, in this case the generated time series object
ts.

LISTING 5.3: Use case 1 - Definitions of semantic function
wrappers

1 # Create function wrapper for STFDF constructur
2 postprocessor = function(args, output, semantics){
3 functionalType(output, parent = FALSE) <− "MarkedEvent"
4 return(output)
5 }
6 STFDF.MarkedEvent = STFDF #give constructor a more informative name
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7 captureSemantics(STFDF.MarkedEvent, postprocessor = postprocessor) <−
TRUE

8 # Create manual wrapper function arround aggregate (direct wrapping currently
not supported)

9 aggregate.st <− function(x, by, FUN, na.rm){
10 output = aggregate(x, by, FUN, na.rm = na.rm)
11 functionalType(output) <− "TLattice"
12 return(output)
13 }
14 #encapsulate intervall−subsetting as a semantic function
15 getTimeIntervals = function(T_set, breaks){
16 output = T_set[breaks]
17 attr (output, "semantics") <− "I set"
18 return(output)
19 }
20 #encapsulate STF−constructor in a function that preserves semantics
21 STF.sem = function(sp, time){
22 output = STF(sp, time) #sp semantics are preserved already
23 attr (output@time, "semantics") <− attr(time, "semantics")
24 return(output)
25 }

ecd.st 
[MarkedEventData: S ⨉ T ⨉ Q set]

aggregate.st
[S ⨉ T ⨉ Q set ⇒ R ⨉ (I set) ⇒ Qstat ⇒ Q ⇒ I ⨉ Q set]

x

STFDF.MarkedEvent
[Q set ⇒ T set ⇒ S set ⇒ T set ⇒ S ⨉ T ⨉ Q set]

ecd.locations 
[S set]

sp

ecd.years 
[T set]

time

getTimeIntervals
[T set ⇒ Q set ⇒ I set]

T_set

ecd.data 
[Q set]

data

target.years 
[I set]

STF.sem
[R ⇒ I set ⇒ R ⨉ (I set)]

time

c(4, 6, 8, 10, 12)
[Q set ⇒ Q set]

breaks

target.st 
[R ⨉ (I set)]

by

FL 
[R]

sp

ts 
[TLatticeData: I ⨉ Q set]

sum 
[Qstat]

FUN

TRUE

na.rm

FIGURE 5.3: Derivation graph that includes user-defined
semantic annotations
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LISTING 5.4: Use case 1 - query of semantics of the gener-
ated time series

1 > ##Query semantics of ts (aggregation result)
2 > getSemanticPedigree(ts)[1:3]
3 procedureName procedure result_attribute
4 1 TLattice I −> Q ALL
5 > getSemanticPedigree(ts)[4:5]
6 result_semantics parent_semantics
7 1 Q set I x Q set
8 > getSemanticPedigree(ts)[6:7]
9 rec_num command

10 1 4 ts = aggregate.st(ecd.st , target . st , sum, na.rm = TRUE)

5.2 Spatial prediction on the meuse river floodplain

5.2.1 Overview

The meuse river data was collected during fieldwork by Rikken and Van
Rijn (1993). It contains top-soil heavy metal concentrations of the meuse
floodplain, taken from locations in a study area near the village of Stein
in the Netherlands. Considering that heavy metal concentrations are just
known for punctual locations, it suggest itself to spatially predict the con-
centration over the complete area.

The dataset was compiled by Edzer Pebesma and the description ex-
tended by David Rossiter. It is included in the sp-package and used to ex-
emplify Spatial Analysis, including prediction, by R. S. Bivand, E. Pebesma,
and Gómez-Rubio (2013). The dataset contains a set of 155 observation lo-
cations that are described by 12 different variables, amongst others top-soil
concentrations of cadmium, copper lead and zinc. Further variables refer
to soil and landscape properties. Supplemental data include a prediction
grid for the study area (muese.grid, cell spacing 40 × 40 m) and an outline
of the study area (meuse.area), given as a spatial polygon.

Bivand et al. suggested different techniques to spatial prediction in this
context. This use-case is based on an ordinary kriging prediction based on
a variogram model, as it is described in the book (R. S. Bivand, E. Pebesma,
and Gómez-Rubio, 2013, pp. 224-233). Figure 5.4 shows the study area and
observation locations on the left, and the result of the kriging-prediction on
zinc concentration on the right, which results from the analysis as shown in
the following.

5.2.2 Approach

The analysis makes use of the packages sp for (R. S. Bivand, E. Pebesma,
and Gómez-Rubio, 2013) for representing and handling spatial data as well
as the packages gstat (E. J. Pebesma, 2004) for variogram modeling and
spatial prediction. Furthermore it was decided to include the prototypical
package mss (C. Stasch, Scheider, et al., 2014) in the use case implementa-
tion, which facilitates meaningful spatial statistics. The mss-package is not
included in the original approach, but the analysis is functionally equiva-
lent.

The analysis is conducted by fitting a linear variogram-model to the
point observations. Variogram models represent assumptions about the
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(A) Ground sampling locations (B) Interpolated log-transformed zinc
concentration

FIGURE 5.4: Zinc concentration prediction at the meuse
floodplain

spatial process that generates the data. In particular, they reflect on the ex-
tent of spatial auto-correlation of observations as well as on the nugget vari-
ance, which incorporates measurement errors and / or micro-variability of
the data.

This model is inputted to an interpolation function, which then predicts
values on a given target geometry, i.e. a spatial grid. (Optionally it can
also compute prediction variances, giving an uncertainty measure for the
predicted values, respectively the range in which the predictions deviate
from observations)

The semantic assumption on the observed heavy metal concentrations
as well as on the predicted values is that they are generated from a spatial
field (SField), formally defined by S ⇒ Q. It is a special case of a Field
S × T ⇒ Q which describes phenomena over space S and time T . An
SField describes phenomena over locations within a fixed time.

The mss-package includes a class SField. Objects of this class represent
are data that were generated from a spatial field (SField) process. They
have a slot named observations, which keeps the observed data, and a lot
named domain, which refers to the spatial extend (SExtent) in which the
spatial phenomenon was observed. The latter also causes interpolation-
procedures to interpolate only in this area, because the SExtent implies
that it is unknown whether the phenomenon exists outside.

When the analysis is executed in R, the meuse data set (meuse) is re-
duced to log-transformed observations of zinc concentrations. The subset
and meuse study area (meuse.area) are then combined by an mss::SField
container (zincPointData). The zinc point observations are represented by
an S × Q set. This is a collection of tuples of spatial locations and quality
values, generated from an SField by the gendata-function (data generator)
from the algebra. The SField-container is represented as a tuple of SField
data and its spatial extent, i.e. (S ×Q set)× SExtent). Similarly, the target
geometry of the prediction (locInterest) is constructed as (Sset)×SExtent,
which represents the spatial locations targeted by the prediction and the
extent of the phenomenon. The interpolated data (intZincPointData) has
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the same representation and semantics as the observed data it is based on
(zincPointData).

The variogram model is fitted to the observed zinc concentration (zinc-
PointData) by a function called modelSemivariogram. The model is passed
on to a function called getInterpolator, which returns a so-called closure.
A closure is a function that inherits data from the environment in which it
is created, i.e. it is a function that is written by another function and con-
tains data (Wickham, 2014, p. 183). In this way, a function called interpola-
tor is created. The interpolator is parametrized with locations of interests.
Therupon, the function interpolates the targeted zinc concentrations (intZ-
incPointData) for a given set of locations (locInterest).

Spatial semantics are assigned to the observed data with the functionalType-
function and to the interpolated data by modifying the interpolator in a
way that it assignes the functional type during execution. Also, all func-
tions are wrapped by the captureSemantics-function, which enables seman-
tic parametrization (postprocessor, validator, default signatures) and par-
tially improves the inference of signatures (e.g. default values are included
which are not explicit inputs by the function call).

During the developement of this use case, it was discussed that the in-
terpolator must have the signature S ⇒ S×Q, respectively Sset⇒ S×Qset.
Hence, these semantics were assigned as the default semantics to the inter-
polation. However, in reality and due to the representation of the SField-
container the de facto signature of the interpolator-call is (Sset)×SExtent⇒
(S×Qset)×SExtent. This mismatch is detected as a semantic inconsistency
and accordingly reflected in the derivation graph.

5.2.3 Implementation

One pragmatic challenge to this use-case is that the overall derivation graph
is way too large to be depicted within this text (Figure 5.5). This problem is
addressed by only recording provenance from that part of the analysis that
is essential and then displaying the reduced derivation graph (Figure 5.6).
This demonstrates that the user can be selective about the information that
is recorded.

The complete R script referring to this use case is depicted in appendix
C. The code listing 5.5 displays only the analysis part of this script. It re-
sponds to the derivation graph depicted in Figure 5.5, which is way to large
to be displayed herein with all details. A workaround is to record prove-
nance only from line 8 on, i.e. by repositioning the enableProvenance() -
function in line 7. The resulting sub-graph (Figure 5.6) represents the core
of the analysis, i.e. model-fitting by modelSemivariogram, construnction of
a model-based interpolator and the interpolation itself. It can be observed
that the interpolator-call is marked by the keyword INCONSISTENT, be-
cause the de facto semantics of the call, which is estimated by inference
from inputs and outputs, are not consistent with the default-semantics, in-
dicated by the semantics-parameter of the function.

It can be further observed that the function called modelSemivariogram
internally calls a function init_model, which is also present in the user’s
workspace. This is one of the side-effects that the prototype can detect.
It thus can produce derivation graphs of greater detail and accuracy.
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LISTING 5.5: Use case 2 - analysis part of R script
1 enableProvenance() # Run analysis
2 # load meuse data from package sp in current session:
3 demo(meuse, ask=FALSE, echo=FALSE)
4 functionalType(meuse) <− "SField"
5 functionalType(meuse.grid) <− "SField"
6 meuse$lzinc = log(meuse$zinc)
7 zincPointData = SFieldData(meuse["lzinc"], meuse.area)
8 interpolator = getInterpolator(modelSemivariogram(zincPointData),

zincPointData)
9 locInterest = SFieldData(geometry(meuse.grid), geometry(meuse.grid),

cellsArePoints = TRUE)
10 intZincPointData = interpolator( locInterest , semantics = "S set −> S x Q set")
11 disableProvenance() #end of analysis

demo
[Q ⇒ Q ⇒ Q ⇒ ((?)Class:CRS) ⨉ ((?)S ⨉ Q set) ⨉ (R) ⨉ ((?)S ⨉ Q set) ⨉ (R)]

crs 
[(?)Class:CRS]

meuse 
[(?)S ⨉ Q set]

meuse.area 
[R]

meuse.grid 
[(?)S ⨉ Q set]

meuse.riv 
[R]

meuse

topic

FALSE

echo

FALSE

ask

functionalType<-
[(?)S ⨉ Q set ⇒ Q ⇒ S ⨉ Q set]

obj

SFieldData
[bool ⇒ R ⇒ S ⨉ Q set ⇒ (S ⨉ Q set) ⨉ SExtend]

domain

functionalType<-
[(?)S ⨉ Q set ⇒ Q ⇒ S ⨉ Q set]

obj

meuse~2 
[SFieldData: S ⨉ Q set]

meuse~3 
[SFieldData: S ⨉ Q set]

log(meuse$zinc)
[S ⨉ Q set ⇒ Q set]

SField

attr

meuse.grid~2 
[SFieldData: S ⨉ Q set]

geometry
[S ⨉ Q set ⇒ S set]

obj

geometry
[S ⨉ Q set ⇒ S set]

obj

SField

attr

meuse["lzinc"] 
[SFieldData: S ⨉ Q set]

meuse$lzinc 
[Q set]

zincPointData 
[(S ⨉ Q set) ⨉ SExtend]

getInterpolator
[Q set ⇒ (S ⨉ Q set) ⨉ SExtend ⇒ (S ⇒ (S ⨉ Q))]

pointData modelSemivariogram
[(S ⨉ Q set) ⨉ SExtend ⇒ Q set]

pointData

observations

interpolator 
[(S ⇒ (S ⨉ Q))]

interpolator
[(S set) ⨉ SExtend ⇒ (S ⨉ Q set) ⨉ SExtend: INCONSISTENT!]

params

init_model 
[(?)Class:function]

locInterest 
[(S set) ⨉ SExtend]

locOfInterest

SFieldData
[bool ⇒ S set ⇒ S set ⇒ (S set) ⨉ SExtend]

observationsdomain

TRUE

cellsArePoints

intZincPointData 
[(S ⨉ Q set) ⨉ SExtend]

S set -> S x Q set

semantics

FIGURE 5.5: Meuse prediction data derivation graph

Listing 5.6 shows the semantic pedigree of the interpolated data: The
dataset as a whole is annotated with the interpolator as a data generation
procedure. In addition, a message is displayed that pedigree is available
for the observations-slot. An inspection of the slot indicates that the data
therein was generated from a spatial field.

LISTING 5.6: Use case 2 - pedigree of the interpolated zinc
point data

1 > getSemanticPedigree(intZincPointData)[1:3]
2 Information: Semantic pedigree is available for the following slot (s) :

observations
3 procedureName procedure result_attribute
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interpolator 
[(S ⇒ (S ⨉ Q))]

interpolator
[(S set) ⨉ SExtend ⇒ (S ⨉ Q set) ⨉ SExtend: INCONSISTENT!]

getInterpolator
[Q set ⇒ (S ⨉ Q set) ⨉ SExtend ⇒ (S ⇒ (S ⨉ Q))]

modelSemivariogram
[(S ⨉ Q set) ⨉ SExtend ⇒ Q set]

params

zincPointData 
[(S ⨉ Q set) ⨉ SExtend]

pointData

pointData

init_model 
[(?)Class:function]

intZincPointData 
[(S ⨉ Q set) ⨉ SExtend]

locInterest 
[(S set) ⨉ SExtend]

locOfInterest

S set -> S x Q set

semantics

FIGURE 5.6: Meuse prediction data derivation sub-graph

4 1 interpolator (S set ) x SExtend −> (S x Q set) x SExtend ALL
5 >
6 > getSemanticPedigree(intZincPointData@observations)[1:3]
7 procedureName procedure result_attribute
8 1 SField S −> Q ALL

5.3 Clustering malaria episodes in Bandiagara, Mali

5.3.1 Overview

In a study that was first published by Coulibaly et al. (2013), incidents of
malaria episodes were recorded amongst children that were aged under 6
years. The study was carried out in Bandiagari, Mali during a transition
season, precisely from June 2009 until May 2010. From 300 children that
participated, 296 clinical malaria cases were recorded.

A common problem in epidemiology is to detect spatial clusters in an
environment; are there areas in which the risk of malaria is higher or lower
than in the the neighborhood? This question was addressed by Gaudart et
al. (2015), who demonstrated a novel algorithm for spatial partitioning on
the data. The algorithm computes so-called spatial oblique decision trees
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(SpODT), which are used to determine boundaries between zones of differ-
ent epidemic risks. Figure 5.7 shows the result of the algorithm as imple-
mented for this use case. The analysis is functionally equivalent to the code
example at page 9 of the paper.

Guardart et al. also proposed the SPODT-package for R, which compiles
functions for spatial partitioning and also includes the dataset of the above
mentioned study by the name dataMALARIA. The data is structured by a
spatial points data frame, which contains 168 locations referring to the geo-
referenced households in which the children lived. The data table contains
two variables: loc represents the identifiers of the registered households
and z are the number of malaria episodes per child for each household.

FIGURE 5.7: Spatial partitioning of malaria episodes. The
plot is identical to Figure 4 in Gaudart et al. (2015, p. 10)

5.3.2 Approach

The SpoDT algorithm starts with computing risk indicators (probabilities)
from the dataset and searches for a boundary that splits the study area into
two areas where the risk indicators are as different as possible. The line is
defined as a linear function of x and y coordinates. The algorithm then esti-
mates boundaries lines that divide each of the two areas by the same criteria
and continues this recursive splitting until pre-defined stopping criteria are
met.

The algorithm is implemented in an R function of name spodt. It per-
forms the classification of the dataset and computes a decision tree that is
an object of class spodt. It includes all results from the algorithm including
the splitting coefficients of each line and for each split the identifiers of the
locations belonging to either of the two spatial classes. A function named
spodtSpatialLines takes the epidemic data and the spodt-object as inputs and
computes a spatial lines object.

According to the terminology by Scheider et al. (2016), the dataset data-
MALARIA was generated from spatial marked events, which are defined
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as SMarkedEvent :: D ⇒ S ×Q. Therefore, the data describes phenomena
that occur at locations in space, which are malaria episodes of children in a
household. The phenomenon is described over a fixed time, i.e. when the
study was carried out.

In other terminology, the data can also be classified as spatial marked
point pattern (C. Stasch, Scheider, et al., 2014), which equals to either spa-
tial marked objects or spatial marked events. Which in compliance with
Scheider et al. have the same formal definitions, i.e. D ⇒ S × Q. It may
be argued hence, that the latter definition also applies, as the point data
refers to households, which are better described as objects. Nevertheless,
it was decided in this work to use the notion of ’event’ because the de-
scribes malaria occurrences, which are phenomena that are instantaneous
in space and time, contrary to objects that can undergo change. The house-
holds are not the subject of the data, but rather the spatial reference of these
occurrences. It must be added that Scheider et al. neither defined spatial
marked events nor spatial marked objects explicitly, but rather they result
from adding a quality domain to an SEvent (event locations) or fixing the
time domain of a Marked Object respectively.

The dataset dataMALARIA is typed as a D × S × Qset. It relates to a
spatial marked event as the follows; the discrete event identifier D is repli-
cated in the data by the variable loc (identifiers of the housholds’ locations)
and the quality value Q is represented by the variable z, which denotes the
average numbers of malaria episodes per child in each household.

The analysis is carried out as follows: The SpODT-algorithm takes the
malaria data as an input and internally computes risk estimates. It then pro-
vides a mapping from these risk estimates to spatial regions in which these
estimates apply. The computed decision tree is this mapping. As a model,
the tree thus fulfills the criteria of a spatial inverted field, defined by the
expression SInvField :: Q ⇒ R. The spodtSpatialLines-function constructs
spatial lines from the decision tree and the malaria data. It is remarkable
that the resulting data is technically a collection spatial lines, but in terms
of semantics it represents a collection of regions.

It shall be noted that the original analysis also includes a subsequent
hypothesis test that validates the classification that is represented by the
decision tree. This validation is not included in this use-case as the focus of
this work lies on modeling data generation and transformation.

5.3.3 Implementation

For communicating the above-mentioned semantics and for applying the
’SpatialSemantics’-package to the R script, the following modifications are
applied to the original code: spodt-function is enclosed by a wrapper (spodt.malaria)
that takes the data and the list-compiled parameters of the spodt-function
as inputs. The wrapper annotates its output, i.e. the decision tree as s spatial
inverted field (SInvField) and includes a validator. The validator checks
whether the input has the functional type SMarkedEvent (i.e. if the data
was generated from a spatial marked events). If not, the wrapper prompts
a warning that indicates that the input does not match with the intended
analysis. For general purpose, the validator may be extended to also accept
other functional types.
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The function spodtSpatialLines is also wrapped and extended with a
postprocessor. This postprocessor annotates the output of the function, i.e.
the spatial lines, with the functional type SInvField, from which also the
semantic type representation of the data, i.e. an R set, is inferred. Code
listing 5.7 shows these definitions in R code.

LISTING 5.7: Use case 3 - definitions of function wrappers,
a postprocessor and a validator

1 validator = function(args, output, semantics, assumtions){
2 data = args[[ "data"]]
3 pedigreeData = getSemanticPedigree(data)
4 valid = "SMarkedEvent" %in% pedigreeData$procedureName
5 if ( !valid) {
6 message= "Spatial partitioning with the given input data was not intended.\

nExpected were SMarkedEventData, "
7 if ( is .null(functionalType(data)))
8 message = paste0("but functional type of data is unknown.")
9 else

10 message = paste0(message, "but given were ",functionalType(data),"Data.")
11 warning(message)
12 }
13 return(valid)
14 }
15 spodt.malaria <− function(params, data){
16 args = append(params, list(data=data))
17 output = base::do.call (SPODT::spodt, args)
18 attr (output, "semantics") <−"SInvField"
19 return(output)
20 }
21 captureSemantics(spodt.malaria, validator=validator) <− TRUE
22 postprocessor = function(args, output, semantics){
23 functionalType(output, parent=FALSE) <− "SInvField"
24 return(output)
25 }
26 captureSemantics(spodtSpatialLines, postprocessor=postprocessor) <− TRUE

As in the former use-cases, the provenance recording is limited to the
core-part of the analysis. It leaves out for instance the pre-processing of the
malaria data to a projected SpatialPointsDataFrame as well as the vizual-
ization of the computed decision tree and risk areas. Code listing 5.8 shows
the recorded commands and Figure 5.8 shows the spatio-temporal deriva-
tion graph that results from the recording. This graphs not only depicts the
semantics of each data an function call, but also the complete parameter list
of the spodt-function. In this way it is different from all other graphs pre-
sented in this work. Displaying lists of parameters is possible because the
’SpatialSemantics’ package visualizes expressions like list(param=..., param2=)
as is, provided that they do not contain calls to non-primitive functions.

LISTING 5.8: Use case 3 - core analysis part
1 enableProvenance()# start recording provenance
2 params = list (formula = z ~1, graft = 0.13, level .max = 7, min.parent = 25, min

.child = 2, rtwo.min = 0.01)
3 spodt.results <− spodt.malaria(params = params, dataMALARIA)
4 #create spatial lines that divide the study area into regions of higher / lower

malaria risk
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5 SSL.result <− spodtSpatialLines(spodt.results, dataMALARIA)
6 disableProvenance()

params 
[Q set]

spodt.malaria
[D ⨉ S ⨉ Q set ⇒ Q set ⇒ SInvField]

params

list(formula = z ~ 1, graft = 0.13, level.max = 7, min.parent = 25, min.child = 2, rtwo.min = 0.01)
[Q set ⇒ Q set]

spodt.results 
[SInvField]

spodtSpatialLines
[D ⨉ S ⨉ Q set ⇒ SInvField ⇒ R set]

object

dataMALARIA 
[SMarkedEventData: D ⨉ S ⨉ Q set]

data

data

SSL.result 
[SInvFieldData: R set]

FIGURE 5.8: Derivation graph of the spatial partitioning
analysis

In code Listing 5.9, the validator that is integrated in the spodt.malaria
- function is tested against the meuse dataset section 5.2). The function
indeed computes a classification tree from the meuse ground samples, but
a warning indicates that this is not the intended usage of the function. The
algorithm is designed for point-pattern analysis, but the data is generated
from a spatial field. Thus, applying the function is not in compliance with
the data’s purpose.

In a corresponding derivation graph, the function call would conse-
quently be marked as INVALID.

LISTING 5.9: Use case 3 - Test validator on meuse data
1 > #test validator against meuse data set
2 > library (sp)
3 > demo(meuse,echo = FALSE, ask = FALSE)
4 > functionalType(meuse) <− "SField"
5 > params = list (formula = zinc ~1, graft = 0.13, level .max = 7, min.parent = 25,

min.child = 2, rtwo.min = 0.01)
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6 > meuse.results = spodt.malaria(params,meuse)
7 Warnmeldungen:
8 1: In validator(args, output, semantics, call _semantics) :
9 Spatial partitioning with the given input data was not intended.

10 Expected were SMarkedEventData, but given were SFieldData.
11 2: In spodt.malaria(params, meuse) :
12 Post−validation of function call failed !
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Chapter 6

Evaluation and results

This chapter evaluates the findings of this work in respect of the research
objectives and their pre-defined requirements (compare with section 1.3): In
compliance with the first objective, the proposed R package is a framework
for the semantic provenance of spatio-temporal data analysis and imple-
ments the algebraic model by Scheider et al. (2016) (section 6.1). Matching
the the second objective, this work fosters meaningful communication of
spatio-temporal statistics (section 6.2. According to the third objective, a se-
lection of three use cases of common analytical problems of Spatial Statistics
puts the R package into action and demonstrates the usefulness of the im-
plemented prototype and the underlying scientific approach (section 6.3).

This Chapter addresses the forth research objective (evaluation), which
is fulfilled by finally drawing meaningful conclusions to the research ques-
tions from the research results (Chapter 8).

6.1 Implementation

The ’SpatialSemantics’-package for R is a domain-aware application for
Spatial Statistics because it makes use of the algebraic model by Scheider
et al. (2016) and thus describes spatio-temporal data and -procedures by of
types of reference systems.

Like most R extensions, the package is easy to install, using just a few
lines of R code (4.1). The package manual includes basic descriptions of
each R function exposed to the user. Furthermore, the Chapter 4 contains a
throughout documentation of the package’s capabilities and usage.

Although the package is still in a prototypical state and did not yet
undergo usability studies or a regular testing and review process, it al-
ready performs with much stability. It works together with many repro-
ducible code examples that are presented herein, notably the three complete
R scripts that perform spatio-temporal data analyses according to the use
cases in Chapter 5 (see Appendices C, D, and E). The R package includes
more runnable scripts in the demo folder.

Using function calls corresponding to the package’s provenance func-
tionality (section 4.2.1), a user can enable and disable provenance tracking
during an R session. While provenance tracking is enabled, task callbacks
perform the provenance recording invisibly in the background. The pack-
age engine generates a spatio-temporal derivation graph from all expres-
sions that are entered in the R command line and the coincident runtime-
state of the R environment. The graph is stored in the internal package
environment and enhanced whenever a callback records new provenance
data. Users can retrieve and export the graph using the Graphviz-format
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dot/gv, which can also be converted into common data formats like pdf,
png, jpg and svg. Dot-graphs can be visualized and visually analyzed in
various GUI-applications. (Section 3.7)

The section 3.6 of this thesis explains the approach of handling seman-
tics. Section 4.2 explains the corresponding semantic functionality imple-
mented in R: The meaning of an analysis is determined automatically as far
as possible. With the help of heuristics and semantic inference, data deriva-
tion graphs are populated with semantic annotations, even if no or little
semantic information is explicit. On the other hand, the framework allows
the user to define missing information manually. Section 5.1 exemplifies
the interplay between heuristics and semantic inference with user-defined
semantics in the context of the first use case.

Appendix A shows a heuristic mapping from data properties, such as
the data type, to semantic representations of data (object semantics). It is
important to note that this mapping is not definite; data types in reality
correspond to many possible semantic representations and vice versa. The
mapping tries to estimate amongst all semantic expressions that possibly
apply that expression which is most likely to apply. The mapping could be
regarded as an automated content assist for semantic annotations. Deter-
mining semantics is further automated by inferring the implicit signature
of a function call or of an expression during runtime. This signature is es-
timated from the semantics of inputs and outputs. Another mapping ap-
plies semantic inference when a user assigns functional types (B) to spatio-
temporal data: If the spatio-temporal generation type of a dataset is known,
the semantic representation of the dataset itself is straightforward. It also
depends on an unknown data generator, though. Nevertheless, this gap of
knowledge is marginal within the context of this work: All spatio-temporal
dataset associated with the use cases directly relate to just two data genera-
tors from the algebra: the map-function and the datagen-function.

The package’s semantics-engine prompts semantics-related messages
during an R session when appropriate. In particular, it prompts warnings
if a function call is semantically inconsistent or invalid (i.e. if the call did
not pass the pre-defined checks), as well as if relevant semantic information
(i.e. annotations) of a spatio-temporal dataset is missing.

At any time during an R session, users can interactively query for the
semantics of any resource in the user’s workspace. The four basic queries
refer to: (1) the semantic representation of an object, (2) the semantic pedi-
gree of an object, (3) the functional type of an object, and (4) the default call
semantics of a function. If necessary, the user can define or refine all this
information manually by setting object attributes or using the correspond-
ing setter-functions (section 4.2.2). Furthermore, a user can query changes
of a variable binding (version history). The thus retrieved information also
reflect on the semantics of the data that are bound by a variable during one
stage of the execution (section 4.2.1).

The findings described in this section suggest conformity of this work
with research objective 1 and its requirements (Design and implement a frame-
work for the semantic provenance of spatio-temporal analysis). Therefore, the
particular research goal is considered fulfilled.
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The current implementation still lacks of data formats for exporting
and sharing semantic provenance, though. Although the Graphviz-format
dot/gv is a mighty format for graph visualization and subsequent visual
evaluation of the same, it provides no means to store provenance records
and semantics in an organized way. This fact will be discussed in Chapter
7.

6.2 Meaningful communication

The semantic attribution of data and objects may appear confusing at first
glance but regarding meaningful communication it is straightforward:

The ’semantics’-attribute of an object (i.e. object semantics) defines its se-
mantic representation (as it appears in the data derivation graph). In other
words, the ’semantics’-attribute describes what an object or a resource rep-
resents. For instance, a list of dates can represent either a set of moments in
time (T set), or a set of time intervals (I set). In the former case, the dates
are interpreted as distinct moments, whereas in the latter case the dates are
interpreted as beginnings and endings of time intervals. This example il-
lustrates that semantics are not always implied by how data is organized.
Semantic annotations are thus means to communicate the implicit model-
ing assumptions of resources.

Object semantics or the ’semantics’-attribute do not always relate to ba-
sic types and their derivations (referents); some resources may also repre-
sent data generators and generation functions. Furthermore, it is not al-
ways clear that resources that are technically objects or datasets also repre-
sent a referent in terms of the algebraic model; the third use case analysis
(5.3) incorporated a decision tree from which data of an inverted spatial
field can be generated. The decision tree is represented by data, but the
data represents a scientific model, in particular, a spatio-temporal genera-
tion function. The tree is labeled accordingly as an SInvField. The R pro-
totype allows to communicate the meaning of such resources and scientific
models by using object semantics as an attribute.

The semantic pedigree of an object is a record of all semantic procedures
that are directly involved in the creation of the object or resource. Hence, a
user that queries semantic pedigree receives a list of generation types and
functions (with their estimated signature) that generated or modified the
dataset either as a whole or parts of it (some attribute). The semantic pedi-
gree is a resource attribute that describes in an abstract way how the re-
source was created.

This work uses the term ’functional type’ for an attribute that corre-
sponds to spatio-temporal datasets. It refers to the spatio-temporal genera-
tion function that was involved in the creation of the resource, but it has a
prominent meaning amongst all other procedures in a resource’s semantic
pedigree. The functional type denotes that generation function that ren-
dered the data into its current semantic representation (strictly speaking, in
conjunction with a data generator - see Appendix B). Moreover, the func-
tional type stands for the hypothetical process that generates the observed
data. Because spatio-temporal generation types are well defined in terms of
reference systems, the functional type allows relating the data back to the
real-world phenomenon it describes, for instance, events, fields, objects or
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trajectories. It also links the data to research assumptions of observations,
because the type definition describes how the phenomenon is modeled. For
instance, if an event is modeled by a mapping from a discrete identifier to
a location, the underlying modeling assumptions are communicated by the
definition Event :: D ⇒ S × T . The functional type of data is incorpo-
rated in the data derivation graphs as a prefix to the semantic represen-
tation (object semantics) of a dataset. For instance, a collection of spatial
locations and quality values that was generated from a spatial field is la-
beled SFieldData : S×Qset). In conclusion, the ’functional type’ attribute
relates spatio-temporal data to its purpose. It explains why data is generated.

R functions (if they are wrapped) can be attributed with default call se-
mantics, a validator, and a postprocessor. While the postprocessor basically
serves the automation of annotating semantics, the former two have direct
impact on meaningful communication: The default call semantics hint to
the purpose of a function. It allows the user to specify the expected semantics
of a function’s signature by a list of permitted signatures. For instance, the
second use case analysis (section 5.2) makes use of the geometry-function
of the sp-package (R. S. Bivand, E. Pebesma, and Gómez-Rubio, 2013). This
function receives a spatial data frame as an input and returns only the spa-
tial components. Therefore, the default call semantics may be for instance
R×Q⇒ R or S×D×Qset⇒ S set. A user can specify these semantics per
function call or per function in order to express what he intents the function
to do. Hence, the default call semantics refer to a function’s purpose in the
context of an analysis. If the de facto signature that is estimated during run-
time does not comply with the default semantics, the call is be marked and
thus communicated as an inconsistent regarding the user’s or developer’s
intentions and how the analysis is carried out in practice.

Because a functional type communicates the purpose of a spatio-temporal
dataset, it can also be inferred what literally is its function, i.e. what can be
done with it. For instance, it is known that interpolation of spatial field data
is meaningful, as well as the a aggregation of point-patterns (i.e. events or
objects) (E. J. Pebesma and C. Stasch, 2014; C. Stasch, Scheider, et al., 2014).
A function’s validator hence provides means to implement ad hoc checks
for meaningfulness of an operation, as this is exemplified by the third use
case (section 5.3). Such a check is realized by letting the validator retrieve
the functional type of the function’s inputs and matching it with the re-
quired type. In case of a mismatch, the function call is marked as invalid
and thus communicated as not meaningful.

In conclusion, a function’s call semantics reflect on its purpose purpose
and alows to match its de facto semantics with the user’s intentions. A func-
tion’s validator allows users to check whether an operation that is carried
out on spatio-temporal data is meaningful in the sense that it complies with
the data’s purpose, which is communicated by its functional type (compare
with E. J. Pebesma and C. Stasch (2014)).

A user can be notified about missing semantics and assumptions about
observations and the underlying hypothetical processes in two ways: The
mapping in Appendix A estimates not only the semantic representation of
an object based on heuristics, it also determines whether the user should
be warned if semantic annotations of a certain data set are missing. This is
mechanism is demonstrated in the first use case (section 5.1) (section 5.3). A
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user is not only notified if an input’s functional type does not comply with
the requirements but also if the type is missing.

All these information is reflected in spatio-temporal data derivation graphs
as well information directly prompted to the user or which a user can in-
teractively query. The data derivation graphs incorporate the basic graph
syntax proposed by Scheider et al. (2016). This syntax is enhanced by addi-
tional syntactical elements (compare with the sections 3.5.3 and 4.2.3) in or-
der to communicate provenance-related specifics that otherwise could not
be communicated, for instance, the names of variables that bound data or
functions. Such information allow the user to retrace how the analysis is
carried out and to relate semantic information back to the underlying R
script and expressions as well as to technical particulars of the execution.

Users can be selective about the information they want to communicate,
because provenance tracking can be flexibly enabled and disabled when an
analysis is executed. All three use cases in Chapter 5 demonstrate how this
can be done: The depicted data derivation graphs display only that part of
the associated execution that is the core of the analysis, i.e. data generation
and transformation procedures. Particulars that are not of direct interest
for comprehending these procedures and thus would only complicate the
graph are purposely excluded from the visualization - for instance, data
preprocessing and calls to plot-functions.

The findings of this section suggest conformity of this work with re-
search objective 2 and its requirements (Enable meaningful communication of
spatio-temporal analysis). Several approaches are described for communicat-
ing the meaning and purpose of datasets, scientific models and function
calls that form part of an analysis. Furthermore, research assumptions on
the same components can be communicated and checks for validity and
consistency applied. Users are notified by warnings if critical semantic
meta-information or research assumptions are missing. It is possible to
relate back semantic information from a data derivation graph to techni-
cal particulars of how the analysis is carried out and users can be selective
about the information to be communicated by deciding which part of an
analysis is tracked.

In some aspects, the current solution compromises between pragma-
tism and formalism in regards of the algebraic model. This is because some
aspects of an analysis, notably function calls and their internals, cannot be
related to formal definitions by the model yet. This will be discussed in the
following chapter 7.

6.3 Demonstration

This work demonstrates the prototypical R package on three use case in
Chapter 5. Each use-case is different from another regarding the data that
is analysed, and the analytical problem that is addressed. Hence the ap-
proach is demonstrated under variable preconditions, which shows the
versatility of the approach. General applicability of the prototype is self-
evident from the use case chapter: For each use case, the meaning and
function of the analysis is explained first, together with the semantics that
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should be applied for the therein explained reasons (overview, approach).
The implementation section that is common for all use cases shows that a
spatio-temporal derivation graph can be generated that incorporates this
exact meaning end semantics. The graph is visualized and explained by a
detailed walk-through of how it is generated. The graphs can also be repro-
duced using the R-scripts from the appendices C, D, E.

Each use case also highlights different aspects and advantages of the
implemented prototype, which are summarized in the following:

Spatio-temporal aggregation of bird counts

The first use case (section 5.1) shows that the R prototype can be applied
to a spatio-temporal point pattern analysis, in which point observations
that refer to events (bird counts per year and observation location) are ag-
gregated over two-year periods and a spatial region (the boundaries of
Florida). The aggregation results in a time series. Implicitly, the analysis
carries out a derivation of a temporal lattice TLattice from marked events
(MarkedEvent), which manifests itself in the input and output data, in the
graph labeled with MarkedEventData (bird count data) and TLatticeData
(the aggregated bird counts). It is found that this derivation process can be
described in terms of it in-and outputs and in terms of provenance, but the
derivation itself still lacks a formal definition from the algebraic model.

It is found that the assignment of a functional type to the bird-count is
not definite, because the data can be interpreted in two different ways based
on the given knowledge: On the one hand, it can be interpreted bird counts
are a marked interval-event D ⇒ S×I×Q, whereas the bird counts are the
aggregated observations over the period of one year. On the other hand, the
functional type could be a regular marked event, if the year date associated
with the counts represents a moment in time (specified by limited accuracy,
though). The latter interpretation was favoured for the use case.

The implementation walk-through highlights that a spatio-temporal deriva-
tion graph can be populated with heuristic semantic information even if no
user-defined annotations are provided and that warnings are prompted in
case some of this missing annotations is crucial to the analysis.

Spatial prediction on the meuse river floodplain

The second use case (section 5.2) shows that the R prototype can be ap-
plied to the analysis of point observations sampled from a continuous spa-
tial field. It also exemplifies spatial prediction in this context. The analysis
does not incorporate a derivation procedure, as input data and generated
data have the same functional type, an SField. The core of this analysis
is a variogram-model that is enclosed by the interpolator-function. This
variogram models the assumption of the spatial field that generated the
point observations that are the input of the analysis. That is why it is possi-
ble to estimate unknown zinc concentrations flood-plain. The interpolator-
function generates spatial field data from this model for given locations of
interest.

It was found that modeling the exact behaviour of the interpolator-
function is difficult based on the existing framework, because the function
internals consists of a spatio-temporal generation function (the variogram
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model), from which spatial field data can be generated, and a data genera-
tor that takes locations of interests and generates the data from the model.
This could problem could be resolved, however, by either modelling the
functions’ internals as a sub-graph, or by rewriting the R script in such a
way that the variogram model stands for itself. Note that the internal var-
iogram model technically is not a function in R, but an object. Regarding
semantics, nevertheless, it fulfills the formal criteria of a spatio-temporal
generation type.

The interpolated zinc data is annotated accordingly with an SField as
a functional type. And although a user cannot exactly pinpoint that the
underlying modeling assumptions have origin from the variogram model
enclosed by the interpolator, it becomes apparent form the derivation graph
and semantic pedigree which function call generated the data. It suggest
itself that this function call somehow must incorporate a model, even this
model unfortunately is not made explicit in this case.

The implementation walk-through highlights in that function calls are
checked for semantic consistency: It is shown that the user is warned and
the interpolation graph inconsistent regarding the call of the interpolator if
the de facto semantics of the call, which are estimated during runtime, do
not comply with the pre-defined default call semantics. It is also demon-
strated that users can be selective about the information that is communi-
cated: While the first graph is too complex and too large to be displayed in
this thesis in full detail, the second graph is reduced to the essential part of
the analysis and thus communicates the meaning and purpose of the use
case analysis much more clearly to the reader of this thesis. Note that this
reduction is not done by posterior editing of the graph, but by pre-defining
at which part of the analysis provenance shall be recorded.

Clustering malaria episodes in Bandiagara, Mali

The third use case once again demonstrates the prototype on a point pat-
tern (malaria episodes per child per household), but in this case in this case
it deals with a spatial point pattern of events that occurred over a fixed time
period. The analysis in this case applies a spatial partitioning algorithm
that estimates areas to which different risks (or risk ranges) of malaria in-
cidents apply. The underlying data derivation procedure manifests itself
in the spodt-function that derives an inverted spatial field, manifested in
the generated spatial opaque decision tree, from marked event locations.
Similar to the first use case, this derivation process lacks a formal defini-
tion from the algebraic model. Similarly, the function spodtSpatialLines
generates spatial regions from the decision tree and the given dataset of
malaria-incidents, but it is not clear how this is done internally, as the data
generator does not work as straightforward as the map- or the datagen-
functions from the algebra.

The use case implementation furthermore highlights how postproces-
sors can automate the annotation of datasets during an execution and how
validators implement ad hoc checks for meaningfulness of a function call.
The validator is applied to the spodt-function that generates the spatial
opaque decision tree. In a negative-demonstration on spatial field data,
it is shown that the validator warns that this is not the intended usage of
the function. It would also warn if the functional type of the input, which
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stand for crucial research assumptions necessary to asses meaningfulness,
are missing. The exact specifics of such a validator would have to be de-
fined by domain-experts that implement analytical functions. Main pur-
pose of the demonstration is to show that such specifications are generally
enabled by the framework.

The use case also exemplifies that complete lists of parameters that are
applied to a function can be displayed as is in a spatio-temporal derivation
graph using the existing framework. Although this ’effect’ is enforced by
customizing the R-script, it is an outcome that should be expanded on in
further developments.

In conclusion, the findings of this section suggest compliance with the
third research objective and its requirements (Demonstrate the solution on
common analytical problems of Spatial Statistics). The use cases are diverse
and replicate analytical approaches that were previously published. It can
be seen that many aspects of meaning and purpose become apparent using
the proposed framework.

Nevertheless, the evaluation of the use cases suggest that there is still
room for improvement: Function calls should to be related more closely
procedures formally defined by the algebra. Possibly it would be benefi-
cial to also model function internals using sub-graphs. However, formal
definitions of the corresponding derivation procedures are still missing, for
instance, how a spatial inverted field derives from marked event locations.
Such an expansion of the existing algebra, in turn, is not within the scope
of this thesis.
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Chapter 7

Discussion

This work handles two significant challenges at a time: a provenance-challenge
and a semantic challenge. The provenance-challenge arises from the neces-
sity to implement the algebraic model by Scheider et al. (2016) in R: Current
provenance trackers do not provide means to incorporate semantics and
they could not be used to generate those spatio-temporal data derivation
graphs shown in this work without a considerable amount of modification.
The herein presented provenance-tracker is novel to R and has not been
implemented yet in this particular way.

The semantic challenge arises from the fact that this work attempts to
implement a semantic model that has never been implemented before and
tries to establish a meaningful relation between the abstract concepts to
technical particulars of R, i.e. expressions, functions, variable bindings and
more. The research in this area is far from being complete. In order to
provide useful intermediate results, this work compromises between prag-
matism and formalism regarding these relations.

These considerations are discussed in the following sections.

7.1 Capturing provenance in R

Provenance tracking in R is a big challenge because of the complexity of
the language side-effects that are hard to detect. Abstracting over R lan-
guage requires a deep understanding of the syntax and meaning of R ex-
pressions, as well as how R parses them within the read-eval-print loop
(R Core Team, 2000) in order to do computing on the language. Therefore,
the ’SpatialSemantics’-package fundamentally relies on non-standard eval-
uation (Wickham, 2014, p. 259): the quote- and substitute-functions in R
allow capturing any expression that is executed in R, to deparse it and to
access its parse tree. The parse-function allows to create custom expres-
sions from strings and the eval- and do.call functions enables the execution
of such custom calls.

The herein presented data derivation graph provide an abstract view of
function calls and data that results from deparsing, sub-dividing and con-
verting complex R expressions in which multiple function calls and vari-
ables are nestled. This shall be illustrated by a code line from the script in
Appendix D. The abstract view of this code is reflected in Figure 5.6

1 interpolator = getInterpolator(modelSemivariogram(zincPointData),
zincPointData)

This expression assigns the output from a call to ’getInterpolator’ to
a variable ’interpolator’. The call to ’getInterpolator’ is evaluated after
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evaluation of the expression ’modelSemivariogram(zincPointData)’. The
’getInterpolator’-function has two input arguments ’params’ (first argu-
ment) and ’pointdata’ (second), but the argument names are not visible
from this expression. The argument list can be retrieved using the formals-
function (R Core Team, 2016, p. 201) (Wickham, 2014, p. 71):

1 > formals(getInterpolator)
2 $params
3

4

5 $pointData
6

7

8 $semantics
9 [1] NA

This call reveals not only the parameter names but also default val-
ues if any. Obviously, the getInterpolator-function has a third argument
with a default value that is not apparent from the code line above. The
’SpatialSemantics’-package internally standardizes function calls using the
match.call function (R Core Team, 2016, p. 309) as the following:

1 > match.call(getInterpolator , quote(getInterpolator(modelSemivariogram(
zincPointData), zincPointData)))

2 getInterpolator(params = modelSemivariogram(zincPointData), pointData =
zincPointData)

Primitive function in R cannot be standardized in this way. The func-
tions ’match.call’ and ’formals’ do not support it. Also, R allows placing
a special argument called . . . (Wickham, 2014, p. 88) that matches any
arguments not matched, i.e. it is a wildcard for any unspecified list of argu-
ments.

Knowing a function’s arguments, on the other hand, is essential for
the construction of semantic wrappers. The current implementation of the
captureSemantics-function attempts to create a generic function proxy that
mimics the behavior of the wrapped function. But this generic wrapping
fails, if no definite argument list can be retrieved. Therefore it is necessary
in some cases to manually define a function that has a definite argument
list and thus calls the function to be wrapped. This function can then be ap-
plied to the ’captureSemantics’-function that creates another wrapper with
semantic capabilities (compare with use case 1 in section 5.1).

There are many ways to assign variables and manipulate objects in R,
which all have to be captured by the provenance tracker in order to provide
an accurate record. R defines the assign-function and the assignment oper-
ators =, <-,�-, -> and -�. (R Core Team, 2016, p. 35-38). The prototype
evaluates these assignment operators and accordingly defines nodes and
edges of the derivation graph. However, the current implementation only
recognizes a limited number of such expressions, which of course can be
amended in further developments. However, some of these assignments
are hard to track. First of all, because R provides means to create use-
defined assignment operators. Second, because assignments can be done
from and to different environments (Wickham, 2014, p. 123), so that for in-
stance, a variable in the users’ workspace can be manipulated from inside
a function using the�--operator or assign-function.
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Third, assignments can also be done using so-called non-standard eval-
uation, which is almost impossible to capture from code analysis.

Finally, assignments can be done in R using replacement-functions (Wick-
ham, 2014, p. 91). Replacement functions are acting like they are directly
modifying an attribute or property of a given in place, but in reality they
first modify a temporary copy of the object and then replace the object by
this copy. An example is the coordinates-function from the sp-package (R. S.
Bivand, E. Pebesma, and Gómez-Rubio, 2013), but also the captureSeman-
tics and functionalType-functions from the ’SpatialSemantics’-package are
replacement functions. A typical call to the coordinate-function looks as
follows:

1 coordinates(meuse) <− c("x", "y")

The ’SpatialSemantics’ package internally standardizes such calls so that
they can be parsed like any other expression (which is also how the R-parser
works internally):

1 > rewriteReplacementFunction(quote(coordinates(meuse) <− c("x", "y")))
2 meuse <− ‘coordinates<−‘(meuse, c("x", "y"))

Some assignments that are side-effects of function calls can be retraced
using the in this thesis proposed detection mechanisms (sections 3.5.2 and
4.2.1). Also, the approach is taken to only record provenance from the user’s
workspace, which narrows down the range of assignment operations to be
detected.

The main alternative to track provenance in R is the RDataTracker by
Lerner and Boose (2014). Figure 7.1 shows a data derivation graph (DDG)
as presented in the paper. It can be seen that the taken approach spares at
least some of the language computing: The underlying script only consists
of simple expression without nesting of operations (which is not common
for R scripts). Those expressions are not itemized but kept as they are. In
this way, the provenance of an R session is represented as a directed graph
of sequential expressions and data that is manipulated or read.

However, such an approach is not applicable to the algebraic model,
because an infinite number of R expression can be formed, but the number
of functions in R is finite. Hence, relating functions and function calls to
semantic procedures is a more a more feasible task than assigning semantics
to complete expressions. Besides, the herein proposed approach supplies
the user with more detailed information about how an analysis is carried
out (by itemizing expressions). A compromise would be to require R scripts
to have one function call per line, but this would mean large burden on the
user’s side.

Technically, the RDataTracker is different from the ’SpatialSemantics’
package in that way that the former only evaluates the runtime state of R
when a function from the library is called; the ’SpatialSemantics’-package
evaluates (provided that tracking is activated) the R runtime state continu-
ously in the background after each top-level task (command) executed from
the R command line.

The works of Silles (2014) on a provenance-aware CXXR provides prove-
nance capabilities for the CXXR interpreter of the R language, but no means
to compute a data derivation graphs comparable with the RDataTracker
or SpatialSemantics. Besides, there currently exist no stable release that is
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FIGURE 7.1: Data Derivation Graph (DDG) presented by
Lerner and Boose (2014)

compatible with the R-packages used in this work for spatio-temporal anal-
ysis. Neither Silles (2014) nor Lerner and Boose (2014) considered incorpo-
rating domain-specific semantics in their frameworks. In this aspect, the ap-
proach taken by this work is unparalleled by existing solutions in R. In con-
clusion, the complexity of R and the lack of pre-existing provenance track-
ing solutions are constricting the implementation of the ’SpatialSemantic’-
package. But this work shows also that the associated challenges can be
resolved and that doing so yields much innovative potential.

7.2 Conceptual challenges regarding semantics

A general constraint to the ’SpatialSemantics’ framework is that particu-
lars of an analysis cannot be related to formal definitions from the algebraic
model. While all spatio-temporal datasets can be defined in terms of refer-
ence systems, this is not the case for function calls: The calls are informally
described by the name of the function or the expression that was used and
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a ’semantic signature’ that specifies its in- and outputs. However, in order
to assess semantics to its full scope, it would be necessary to define these
calls by types of reference systems and primitive functions from the alge-
bra. The same applies to the underlying derivation processes as in the third
use-case 5.3: A formal definition of how a spatial inverted field derives
from event locations does not exist (nor can it be computed at the moment).
Nevertheless, these constraints do not mean that the research goals are not
fulfilled because research in first place seeks to implement a framework for
the existing model by (Scheider et al., 2016), not to expand on the model
with additional definitions. Besides, the framework provides with the con-
cept of ’semantic pedigree’ means to capture those formal definitions, in-
dependent of how the analysis is carried out technically: The currently the
pedigree record is filled with both, formal spatio-temporal derivation types
and informally defined functions that are involved in the creation of an ob-
ject. If the corresponding definitions were provided, the record could be
filled with the formal semantic procedures used underlying the functions
internals and all preceding operations from the algebra leading up to the
creation of a resource. The definitions could be automatically annotated by
the function’s postprocessors. The result would be a record of all semantic
procedures leading up to the creation of a research, from which, in turn, a
spatio-temporal derivation graph could be computed that has a higher level
of abstraction: While the herein presented derivation graphs often compro-
mise between technical constraints and semantics, those derivation graphs
would display semantics independent from (technical) provenance. These
graphs, on the other hand, would be difficult to be related back to how the
analysis is carried out, i.e. to the source code, variables, function parame-
ters and more. An alternative would be to model function call semantics as
a sub-graph of the node that refers to the function call. This would be the
most comprehensive solution in terms of provenance and semantics.

In this work, the approach is taken to assign semantic annotations to
all data present in the analysis. In some cases, it is questionable if some
data should be annotated at all. The algebra includes no guidelines for this,
though: Literal function arguments are generally mapped to quality values,
according to the heuristic mapping (A), but some of these arguments do not
represent any kind of observation, but sometimes arbitrary parameters that
influence the functions behavior, for instance, if messages should be printed
or not. Such parameters do not represent referents nor any other defined
part of the algebra. Whether and how such particulars of an analysis should
be annotated has to be assessed by domain experts. The proposed frame-
work, however, has the capability to assign any kind of semantic type to
any part of the analysis. The decision about such scientific particulars is up
to the user.

7.3 Further works

The heuristic mapping in Appendix A is not a definite mapping from data
types to semantics, but an estimation of the semantics that is considered
likely. This mapping would have to be extended and refined in future devel-
opments. Specifics like when and how a user should be notified about auto-
mated estimations also need to be determined. In future developments, the
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mapping should also be made customizable by the user, while currently,
it is hard-coded within the package. The mapping can be seen as an au-
tomated content assist for users, and this work proposes to expand on this
idea: By assessing not only all semantics that are probable but narrowing
down the range of annotations that are possible regarding data structures,
the mapping could become the basis of an interactive content-assist appli-
cation for spatial semantics. While recording provenance, the user would
be notified about missing semantics of a certain resource. From a com-
mented list of suggested annotations, the user would then select the type
that applies to the data. The application would then automatically refine
the provenance record, the R script, and also annotate the data.

This thesis exemplifies the scientific approach on a package for R, but
it takes the stand that the same approach could be expanded on scripting
languages like Python. Python scripts can be used for Spatial Statistics as
well - the Python extension Arcpy, for instance, enables automated map-
ping and analyses in ArcGIS (Zandbergen, 2013). The algebraic model of
Scheider et al. (2016) may also be implemented in workflow management
systems like Taverna (Alper et al., 2013) or the ArcGIS model builder (Allen,
2011). Those solutions could then be compared with the implementation in
R and thus a refinement of the overall approach could be undertaken.

The current implementation is restricted by the lack of a data model that
stores provenance and semantics in an organized way. Such a data model
would ideally implement the web standards recommended by the W3C,
like the Resource Description Framework (RDF) (Klyne and Carroll, 2004)
and the PROV model for provenance representation (Missier, Belhajjame,
and Cheney, 2013; Gil, Miles, et al., 2013). Such a data model would require
the development of a compatible vocabulary or an ontology that captures
the semantic provenance of the herein presented data derivation graph. It
suggests itself to comply with the W3C Web Ontology Language (OWL)
(McGuinness and Van Harmelen, 2004) for this purpose. This extension of
the presented framework would enable publishing spatio-temporal deriva-
tion graphs on the web, according to the principles of Linked Open Data
(LOD). It furthermore would enable advanced queries over those graphs
using the SPARQL query language (Group, 2013). Such queries could be
used for example to query the derivation of intermediate results from an
analysis and to thus to extract subgraphs from a larger provenance graph.

Furthermore, it may be considered to embed the prototype in a larger
provenance system such as Karma or its successor tool Komadu (Suriarachchi,
Zhou, and Plale, 2015). These systems already provide data models, stor-
age and reasoning capabilities, web services and user interfaces that facili-
tate capturing provenance and semantics. Komadu also supports the cur-
rent W3C PROV standard. According to the authors, Komadu can collect
provenance information from any application. It should be assessed if the
API and implementation of this tool are flexible and enough to capture and
represent spatio-temporal derivation graphs.
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Chapter 8

Conclusions

The following paragraphs derive meaningful conclusions from this work to
the research question 1, 2, 3 and 4 in Chapter 1.

The main contribution of this work is a specification of guidelines for
communicating meaning and purpose of spatio-temporal data analysis within
an environment for Spatial Statistics. The conceptual basis of this specifica-
tion is the existing model for spatio-temporal data generation and deriva-
tion by Scheider et al. (2016). The approach is exemplified by a prototypical
extension for R but it can be expanded on any software environment that
utilizes spatio-temporal analysis as a tool.

The requirements for implementing the model are provenance record-
ing capabilities in the target environment. This thesis also specifies how
these capabilities recording can be implemented for functional scripting
languages that rely on a read-eval-print loop similar to R. The main ap-
proach is to implement handlers that are executed in the background and
record provenance every time a new command is executed. Provenance
information is obtained from evaluating the runtime state of the software
environment and from analyzing and itemizing the executed command.
The provenance recording tool builds up a generic data derivation graph
of the executed analysis that can be populated with semantic annotations
in compliance with the algebra. The provenance metadata is persistently
stored in the background during the analysis and won’t be deleted or over-
written unless the user does so intentionally. The user can retrieve and
export the graph in an appropriate data format (in this work exemplified
by the dot/gv format) that allows the graph to be visualized, reviewed and
shared with third parties. The assignment of semantic annotations can be
automated using post-processor functions that annotate the output of func-
tions during runtime. Semantic inference and as heuristics provide means
to estimate semantics that are not made explicit by the user.

Based on these capabilities, research assumptions on the analysis can be
made explicit by assigning semantic annotations to the provenance record:
The semantics-attribute (object or resource semantics) expresses what a re-
source represents in terms of the model. This could be either a referent, a
generation type or a data generator. While observed data corresponds to
referents, scientific models or function from which data can be generated
are generation types. It thus can be inferred what a resource represents and
what it is meant to express. Spatio-temporal datasets are also attributed
with a functional type that communicates the purpose of the data and as-
sumptions about the hypothetical process that generates the observed data.
The functional type relates a data set a spatio-temporal generation type that
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defines the observed phenomenon (e.g. object, field, trajectory). The gener-
ation type also defines how this phenomenon is modeled by a generation
function. Thus it can be inferred how the semantics of the dataset (object /
resource semantics) are rendered in conjunction with a data generator.

The purpose of a function or function call can be communicated by as-
signing default call semantics to the function that expresses how the func-
tion is supposed to behave regarding the semantics of its inputs and out-
puts.

The meaningfulness of a data generation or derivation operation can be
checked by assessing the functional type of the input data, because know-
ing the purpose of data, i.e. why data has been generated, the function of
data can be inferred, i.e. what can be done with the data. It is proposed to
implement meaningfulness checks by a validator function that is executed
after a function call and has the functions inputs, outputs, and semantics as
arguments. Domain experts could define these validators that are attached
to the functions and thus define requirements on which inputs are permit-
ted for the function call. The validator could also check the output in terms
of if the results do also have the expected semantics. The validator would
throw warnings or errors in case that the operation is not meaningful. This
would then be recorded and reflected by the data derivation graph.

The communication between the environment for Spatial Statistics could
be enhanced by letting the user interactively query particular aspects of
the stored semantics and by letting the system print semantics-related mes-
sages, warnings, and errors on the user-interface.

The communication from the statistician to fellow researchers finally
can be improved by sharing the spatio-temporal derivation graph and us-
ing it as an illustration for explaining how an analysis was conducted and
why it was conducted in this way.
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Appendix A

Heuristic mapping of semantic
types
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TABLE A.1: The heuristic mapping for estimating unknown
of semantic types, used by the ’SpatialSemantics’-package

Classes in R Semantic type Warning
numeric, character,
factor, symbol,
name, expression
(base-package)

Q (for atomic vectors)
Q set (if length > 1)

No

logical(base-package) bool (for atomic vectors)
bool set (if length > 1)

No

SField1 (mss package) ′a× SExtent2 Depends
on ’a

SpatialLines,
SpatialPixels,
SpatialPoints,
SpatialMultiPoints
(sp-package)

S or S set No

SpatialLinesDataFrame,
SpatialPixelsDataFrame,
SpatialPointsDataFrame,
SpatialMultiPointsDataFrame,
SpatialGridDataFrame
(sp-package)

(?)S ×Q set Yes

SpatialGrid,
SpatialPolygons
(sp-package)

R or R set No

SpatialPolygonsDataFrame
(sp-package)

(?)R×Q set Yes

Spatial
(sp-package, includes un-
known subclasses)

(?)S set Yes

Date, POSIXlt, POSIXct
(base-package), xts (xts-
package)

T or T set NO

STF
(spacetime-package)

′a× ′b Depends
on ’a (time-
slot) and ’b
(sp-slot)

STFDF
(spacetime-package)

(?)S × T ×Q set Yes

STI
(spacetime-package)

(?)S × T set Yes

STIDF
(spacetime-package)

(?)S × T ×Q set Yes

STS
(spacetime-package)

(?)S × T set Yes

STSDF
(spacetime-package)

(?)S × T ×Q set Yes

(other classes) (?)Class:<class name> No
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Appendix B

Functional type mapping

FIGURE B.1: The Data derivation graph underlying the
functional type mapping: result semantics are estimated by
mapping the generation procedure the inputs on the gen-
eration procedure by map result semantics originate from
applying inputs and procedure to datagen. Map and datagen

are both data generators from the algebra.

TABLE B.1: Functional type mapping - If the procedure
name is known, the following semantics and data gener-
ations can be inferred based on Figure B.1 (Listing is not

exhaustive)

Provedure Name Procedure definition Result semantics Parent semantics
Field S × T ⇒ Q Q set S × T ×Q set

TField T ⇒ Q Q set T ×Q set

SField S ⇒ Q Q set S ×Q set

InvField Q⇒ Occurs Occurs set Q×Occurs set

SInvField Q⇒ R R set Q×R set

TInvField Q⇒ T T set Q× T set

Lattice R⇒ I ⇒ Q Q set R× I ×Q set

SLattice R⇒ Q Q set R×Q set

TLattice I ⇒ Q Q set I ×Q set

Event D ⇒ S × T D × S × T set D × S × T set

MarkedEvent D ⇒ S × T ×Q S × T ×Q set D × S × T ×Q set

SMarkedEvent D ⇒ S ×Q S ×Q set D × S ×Q set

MarkedTrajectory T ⇒ S ×Q S ×Q set T × S ×Q set

MarkedObjects D ⇒ T ⇒ S ×Q S ×Q set D × T × S ×Q set
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Appendix C

Space-time aggregation - R
script

LISTING C.1: Space-time aggregation - complete R script
1 library (xts)
2 library (sp)
3 library (spacetime)
4 library (maps)
5 library (maptools)
6 library (SpatialSemantics)
7 library (Rgraphviz)
8

9 ## Data preparation
10 ## download "ECDovelatlon.dat" and ECDoveBBS1986_2003.dat from
11

12 #read and prepare observation locations as spatial points:
13 ecd.locations <− as.matrix(read.table("ECDovelatlon.dat", header = FALSE))
14 ecd.locations <− SpatialPoints(ecd.locations [, c (2,1) ])
15 proj4string(ecd.locations) <− CRS("+proj=longlat +datum=WGS84")
16 #observation years (1986−2003):
17 ecd.years <− as.Date(paste0(1986:2003, "−01−01"), "%Y−%m−%d")
18 #read and prepare bird count data as single−column data frame:
19 ecd <− read.table("ECDoveBBS1986_2003.dat", header=FALSE)
20 ecd[ecd == −1] <− NA
21 ecd.data = data.frame(counts = as.vector(as.matrix(ecd)))
22 #retrieve Florida state boundaries:
23 m <−map("state", "florida" , fill = TRUE, plot = FALSE)
24 FL <−map2SpatialPolygons(m, "FL")
25 proj4string(FL) <− proj4string(ecd.locations)
26

27 #plot location observations near Florida
28 plot(FL)
29 points(ecd.locations , pch="+", col="red")
30

31 ## Prepare semantics
32

33 # Create function wrapper for STFDF constructur
34 postprocessor = function(args, output, semantics){
35 functionalType(output, parent = FALSE) <− "MarkedEvent"
36 return(output)
37 }
38 STFDF.MarkedEvent = STFDF #give constructor a more informative name
39 captureSemantics(STFDF.MarkedEvent, postprocessor = postprocessor) <−

TRUE
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40 # Create manual wrapper function arround aggregate (direct wrapping currently
not supported)

41 aggregate.st <− function(x, by, FUN, na.rm){
42 output = aggregate(x, by, FUN, na.rm = na.rm)
43 functionalType(output) <− "TLattice"
44 return(output)
45 }
46 #encapsulate intervall−subsetting as a semantic function
47 getTimeIntervals = function(T_set, breaks){
48 output = T_set[breaks]
49 attr (output, "semantics") <− "I set"
50 return(output)
51 }
52 #encapsulate STF−constructor in a function that preserves semantics
53 STF.sem = function(sp, time){
54 output = STF(sp, time) #sp semantics are preserved already
55 attr (output@time, "semantics") <− attr(time, "semantics")
56 return(output)
57 }
58

59 #Analysis starts here:
60 enableProvenance()
61 #Create space−time object of all bird counts
62 ecd.st <− STFDF.MarkedEvent(ecd.locations, ecd.years, ecd.data)
63 #Create target−geometry to aggregate over Florida−state area
64 # in 2−year periods
65 target .years = getTimeIntervals(ecd.years, c (4,6,8,10,12) )
66 target . st <− STF.sem(FL, target.years)
67 #execute aggregation
68 ts = aggregate.st(ecd.st , target . st , sum, na.rm = TRUE)
69 disableProvenance()
70

71 #plot and export derivatin graph
72 g = getScriptGraph()
73 plot(g)
74 toFile (g, layoutType="dot", filename="Florida.dot", fileType="dot")
75 system(command = "dot −Tpdf Florida.dot −o Florida.pdf")
76 #query semantics
77 getSemanticPedigree(ecd.st)
78 getSemanticPedigree(ts)
79 getSemanticPedigree(target.st)
80 #rset provenance to its default state
81 reset_provenance()
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Appendix D

Spatial prediction - R script

LISTING D.1: Spatial prediction - complete R script
1 library (mss)
2 library (sp)
3 library (gstat )
4 library (Rgraphviz)
5 library (SpatialSemantics)
6

7 # define helper functions
8 #

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

9 init _model = function(pointData) {
10 range = sqrt(sum(apply(bbox(pointData@observations), 1, diff)^2)) / 6
11 sill = var(pointData[[1]])
12 vgm(2 ∗ sill / 3, "Sph", range, sill / 3) # initial variogram model
13 }
14 captureSemantics(init_model) <−TRUE
15 modelSemivariogram = function(pointData) {
16 n = names(pointData@observations)
17 if (length(n) > 1)
18 warning("taking first attribute variable")
19 f = as.formula(paste(n[1], "~1")) # which variable to model? take first .
20 init = init _model(pointData)
21 fit .variogram(variogram(f, pointData@observations), init)
22 }
23 captureSemantics(modelSemivariogram) <−TRUE
24 getInterpolator = function(params, pointData) {
25 if ( ! is (params, "variogramModel"))
26 warning("getInterpolator: params should be of class variogramModel")
27 out=function(locOfInterest) {
28 n = names(pointData@observations)[1] #take first variogram model
29 f = as.formula(paste(n, "~ 1") )
30 out=interpolate(f , pointData, locOfInterest , model = params)
31 functionalType(out@observations) <− "SField"
32 return(out)
33 }
34 captureSemantics(out, semantics = "S −> (S, Q)") <−TRUE
35 attr (out, "semantics") <− "(S −> (S x Q))"
36 return(out)
37 }
38 captureSemantics(getInterpolator, procedureName="getInterpolator") <−TRUE
39 captureSemantics(geometry, procedureName="fst") <− TRUE
40 SFieldData <− SField #rename constructor to avoid ambiguities
41 captureSemantics(SFieldData, procedureName = "SFieldData",
42 postprocessor = function(args, output, call _semantics) {
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43 attr (output@observations, "semanticPedigree") <− getSemanticPedigree(
args$observations)

44 attr (output@observations, "semantics") <− attr(args$observations,"semantics
")

45 return(output)
46 }
47 ) <− TRUE
48

49 enableProvenance() # Run analysis
50 # load meuse data from package sp in current session:
51 demo(meuse, ask=FALSE, echo=FALSE)
52 functionalType(meuse) <− "SField"
53 functionalType(meuse.grid) <− "SField"
54 meuse$lzinc = log(meuse$zinc)
55 zincPointData = SFieldData(meuse["lzinc"], meuse.area)
56 interpolator = getInterpolator(modelSemivariogram(zincPointData),

zincPointData)
57 locInterest = SFieldData(geometry(meuse.grid), geometry(meuse.grid),

cellsArePoints = TRUE)
58 intZincPointData = interpolator( locInterest , semantics = "S set −> S x Q set

")
59 disableProvenance() #end of analysis
60

61 spplot(intZincPointData@observations["var1.pred"])
62 plot(zincPointData) #plot data
63 # Export / visualize derivation graph
64 g = getScriptGraph()
65 plot(g, main="Derivation Graph")
66 toFile (g , layoutType="dot", filename="meuse−prediction.dot", fileType="dot")
67 system(command = "dot −Tpdf meuse−prediction.dot −o meuse−prediction.pdf

")
68

69 reset_provenance()
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Appendix E

Malaria Clustering - R script

LISTING E.1: Malaria Clustering - complete R script
1 library (SPODT)
2 library ( tree )
3 library (SpatialSemantics)
4 library (Rgraphviz)
5 #prepare semantics and wrappers
6 validator = function(args, output, semantics, assumtions){
7 data = args[[ "data"]]
8 pedigreeData = getSemanticPedigree(data)
9 valid = "SMarkedEvent" %in% pedigreeData$procedureName

10 if ( !valid) {
11 message= "Spatial partitioning with the given input data was not intended.\

nExpected were SMarkedEventData, "
12 if ( is .null(functionalType(data)))
13 message = paste0("but functional type of data is unknown.")
14 else
15 message = paste0(message, "but given were ",functionalType(data),"Data.")
16 warning(message)
17 }
18 return(valid)
19 }
20 spodt.malaria <− function(params, data){
21 args = append(params, list(data=data))
22 output = base::do.call (SPODT::spodt, args)
23 attr (output, "semantics") <−"SInvField"
24 return(output)
25 }
26 captureSemantics(spodt.malaria, validator=validator) <− TRUE
27 postprocessor = function(args, output, semantics){
28 functionalType(output, parent=FALSE) <− "SInvField"
29 return(output)
30 }
31 captureSemantics(spodtSpatialLines, postprocessor=postprocessor) <− TRUE
32

33 #data preparation
34 data("dataMALARIA")
35 coordinates(dataMALARIA) <− c("x", "y")
36 proj4string(dataMALARIA) <− "+proj=longlat +datum=WGS84 +ellps=WGS84"
37 dataMALARIA <− spTransform(dataMALARIA, CRS("+proj=merc +datum=

WGS84 +ellps=WGS84"))
38 functionalType(dataMALARIA) <− "SMarkedEvent"
39

40 enableProvenance()# start recording provenance
41 params = list (formula = z ~1, graft = 0.13, level .max = 7, min.parent = 25,

min.child = 2, rtwo.min = 0.01)



Appendix E. Malaria Clustering - R script 82

42 spodt.results <− spodt.malaria(params = params, dataMALARIA)
43 #create spatial lines that divide the study area into regions of higher /

lower malaria risk
44 SSL.result <− spodtSpatialLines(spodt.results, dataMALARIA)
45 disableProvenance()
46

47 ##PLOT RESULTS
48 # classification tree
49 spodt.tree(spodt.results )
50 plot(SSL.result)
51 #adding each location
52 points(dataMALARIA, cex = log(dataMALARIA@data$z∗10))
53 ### END OF ANALSIS
54

55 #visualize / export derivation graph
56 g = getScriptGraph()
57 plot(g, main="Derivation Graph")
58 toFile (g , layoutType="dot", filename="SPODT−use−case.dot", fileType="dot")
59 system(command = "dot −Tpdf SPODT−use−case.dot −o SPODT−use−case.pdf

")
60

61 #delete internal provenance record
62 reset_provenance()
63

64 #test validator against meuse data set
65 library (sp)
66 demo(meuse,echo = FALSE, ask = FALSE)
67 functionalType(meuse) <− "SField"
68 params = list (formula = zinc ~1, graft = 0.13, level .max = 7, min.parent = 25,

min.child = 2, rtwo.min = 0.01)
69 meuse.results = spodt.malaria(params,meuse)
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